Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants
Geometry & topology, Tome 18 (2014) no. 4, pp. 1865-1910.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that genus-zero and genus-one stationary Gromov–Witten invariants of 1 arise as the Eynard–Orantin invariants of the spectral curve x = z + 1z, y = lnz. As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large-degree Gromov–Witten invariants of 1.

DOI : 10.2140/gt.2014.18.1865
Classification : 05A15, 14N35
Keywords: Gromov–Witten, moduli space, Eynard–Orantin

Norbury, Paul 1 ; Scott, Nick 2

1 Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
2 Mathematics and Statistics, University of Melbourne, Melbourne 3010, Australia
@article{GT_2014_18_4_a0,
     author = {Norbury, Paul and Scott, Nick},
     title = {Gromov{\textendash}Witten invariants of {\ensuremath{\mathbb{P}}1} and {Eynard{\textendash}Orantin} invariants},
     journal = {Geometry & topology},
     pages = {1865--1910},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.1865},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/}
}
TY  - JOUR
AU  - Norbury, Paul
AU  - Scott, Nick
TI  - Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants
JO  - Geometry & topology
PY  - 2014
SP  - 1865
EP  - 1910
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/
DO  - 10.2140/gt.2014.18.1865
ID  - GT_2014_18_4_a0
ER  - 
%0 Journal Article
%A Norbury, Paul
%A Scott, Nick
%T Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants
%J Geometry & topology
%D 2014
%P 1865-1910
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/
%R 10.2140/gt.2014.18.1865
%F GT_2014_18_4_a0
Norbury, Paul; Scott, Nick. Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants. Geometry & topology, Tome 18 (2014) no. 4, pp. 1865-1910. doi : 10.2140/gt.2014.18.1865. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/

[1] G Borot, B Eynard, M Mulase, B Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011) 522

[2] V Bouchard, A Klemm, M Mariño, S Pasquetti, Remodeling the B–model, Comm. Math. Phys. 287 (2009) 117

[3] V Bouchard, M Mariño, Hurwitz numbers, matrix models and enumerative geometry, from: "From Hodge theory to integrability and TQFT tt*–geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 263

[4] R Dijkgraaf, H Fuji, M Manabe, The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, Nuclear Phys. B 849 (2011) 166

[5] B Eynard, All order asymptotic expansion of large partitions, J. Stat. Mech. Theory Exp. (2008) 34

[6] B Eynard, Recursion between Mumford volumes of moduli spaces, Ann. Henri Poincaré 12 (2011) 1431

[7] B Eynard, M Mulase, B Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011) 629

[8] B Eynard, N Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347

[9] B Eynard, N Orantin, Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009) 293001, 117

[10] J D Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Springer (1973)

[11] E Getzler, Topological recursion relations in genus $2$, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. Publ. (1998) 73

[12] E Getzler, The Toda conjecture, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 51

[13] M Mariño, Open string amplitudes and large order behavior in topological string theory, J. High Energy Phys. (2008) 060, 34

[14] P Norbury, String and dilaton equations for counting lattice points in the moduli space of curves, Trans. Amer. Math. Soc. 365 (2013) 1687

[15] P Norbury, N Scott, Polynomials representing Eynard–Orantin invariants, Q. J. Math. 64 (2013) 515

[16] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517

[17] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47

[18] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models, from: "Algebraic geometry, Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325

[19] A N Tjurin, Periods of quadratic differentials, Uspekhi Mat. Nauk 33 (1978) 149, 272

[20] H J H Tuenter, Walking into an absolute sum, Fibonacci Quart. 40 (2002) 175

[21] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Proceedings of the conference on geometry and topology held at Harvard University, April 27–29, 1990" (editors S T Yau, H B Lawson), Surveys in differential geometry 1, Int. Press (1991) 243

Cité par Sources :