Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that genus-zero and genus-one stationary Gromov–Witten invariants of arise as the Eynard–Orantin invariants of the spectral curve , . As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large-degree Gromov–Witten invariants of .
Norbury, Paul 1 ; Scott, Nick 2
@article{GT_2014_18_4_a0, author = {Norbury, Paul and Scott, Nick}, title = {Gromov{\textendash}Witten invariants of {\ensuremath{\mathbb{P}}1} and {Eynard{\textendash}Orantin} invariants}, journal = {Geometry & topology}, pages = {1865--1910}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.1865}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/} }
TY - JOUR AU - Norbury, Paul AU - Scott, Nick TI - Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants JO - Geometry & topology PY - 2014 SP - 1865 EP - 1910 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/ DO - 10.2140/gt.2014.18.1865 ID - GT_2014_18_4_a0 ER -
Norbury, Paul; Scott, Nick. Gromov–Witten invariants of ℙ1 and Eynard–Orantin invariants. Geometry & topology, Tome 18 (2014) no. 4, pp. 1865-1910. doi : 10.2140/gt.2014.18.1865. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1865/
[1] A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011) 522
, , , ,[2] Remodeling the B–model, Comm. Math. Phys. 287 (2009) 117
, , , ,[3] Hurwitz numbers, matrix models and enumerative geometry, from: "From Hodge theory to integrability and TQFT tt*–geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 263
, ,[4] The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, Nuclear Phys. B 849 (2011) 166
, , ,[5] All order asymptotic expansion of large partitions, J. Stat. Mech. Theory Exp. (2008) 34
,[6] Recursion between Mumford volumes of moduli spaces, Ann. Henri Poincaré 12 (2011) 1431
,[7] The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011) 629
, , ,[8] Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347
, ,[9] Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009) 293001, 117
, ,[10] Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Springer (1973)
,[11] Topological recursion relations in genus $2$, from: "Integrable systems and algebraic geometry" (editors M H Saito, Y Shimizu, K Ueno), World Sci. Publ. (1998) 73
,[12] The Toda conjecture, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 51
,[13] Open string amplitudes and large order behavior in topological string theory, J. High Energy Phys. (2008) 060, 34
,[14] String and dilaton equations for counting lattice points in the moduli space of curves, Trans. Amer. Math. Soc. 365 (2013) 1687
,[15] Polynomials representing Eynard–Orantin invariants, Q. J. Math. 64 (2013) 515
, ,[16] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517
, ,[17] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47
, ,[18] Gromov–Witten theory, Hurwitz numbers, and matrix models, from: "Algebraic geometry, Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325
, ,[19] Periods of quadratic differentials, Uspekhi Mat. Nauk 33 (1978) 149, 272
,[20] Walking into an absolute sum, Fibonacci Quart. 40 (2002) 175
,[21] Two-dimensional gravity and intersection theory on moduli space, from: "Proceedings of the conference on geometry and topology held at Harvard University, April 27–29, 1990" (editors S T Yau, H B Lawson), Surveys in differential geometry 1, Int. Press (1991) 243
,Cité par Sources :