Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show, for or , there is precisely one equivariant homeomorphism class of –manifolds for which is homotopy equivalent to the –torus and acts so that for all . If and , we show there are infinitely many such –manifolds. Each is smoothable with exactly fixed points.
The key technical point is that we compute, for all , the equivariant structure set for the corresponding crystallographic group in terms of the Cappell –groups arising from its infinite dihedral subgroups.
Connolly, Frank 1 ; Davis, James F 2 ; Khan, Qayum 3
@article{GT_2014_18_3_a10, author = {Connolly, Frank and Davis, James F and Khan, Qayum}, title = {Topological rigidity and {H1{\textendash}negative} involutions on tori}, journal = {Geometry & topology}, pages = {1719--1768}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1719}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/} }
TY - JOUR AU - Connolly, Frank AU - Davis, James F AU - Khan, Qayum TI - Topological rigidity and H1–negative involutions on tori JO - Geometry & topology PY - 2014 SP - 1719 EP - 1768 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/ DO - 10.2140/gt.2014.18.1719 ID - GT_2014_18_3_a10 ER -
%0 Journal Article %A Connolly, Frank %A Davis, James F %A Khan, Qayum %T Topological rigidity and H1–negative involutions on tori %J Geometry & topology %D 2014 %P 1719-1768 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/ %R 10.2140/gt.2014.18.1719 %F GT_2014_18_3_a10
Connolly, Frank; Davis, James F; Khan, Qayum. Topological rigidity and H1–negative involutions on tori. Geometry & topology, Tome 18 (2014) no. 3, pp. 1719-1768. doi : 10.2140/gt.2014.18.1719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/
[1] Geometrization of 3–manifolds via the Ricci flow, Notices Amer. Math. Soc. 51 (2004) 184
,[2] Generalized Arf invariants in algebraic L–theory, Adv. Math. 199 (2006) 542 | DOI
, ,[3] On the domain of the assembly map in algebraic K–theory, Algebr. Geom. Topol. 3 (2003) 1037 | DOI
,[4] On crossed product rings with twisted involutions, their module categories and L–theory, from: "Cohomology of groups and algebraic –theory" (editors L Ji, K Liu, S T Yau), Adv. Lect. Math. (ALM), Int. Press (2010) 1
, ,[5] The Borel conjecture for hyperbolic and CAT(0)–groups, Ann. of Math. (2) 175 (2012) 631 | DOI
, ,[6] Algebraic K–theory, W. A. Benjamin (1968)
,[7] Seminar on transformation groups, 46, Princeton Univ. Press (1960)
,[8] Sheaf theory, 170, Springer (1997) | DOI
,[9] Structures on M × R, Proc. Cambridge Philos. Soc. 61 (1965) 337
,[10] Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ π1, Bull. Amer. Math. Soc. 79 (1973) 909 | DOI
,[11] Manifolds with fundamental group a generalized free product, I, Bull. Amer. Math. Soc. 80 (1974) 1193 | DOI
,[12] Unitary nilpotent groups and Hermitian K–theory, I, Bull. Amer. Math. Soc. 80 (1974) 1117 | DOI
,[13] A splitting theorem for manifolds, Invent. Math. 33 (1976) 69
,[14] Functoriality of isovariant homotopy classification,
, , ,[15] The surgery obstruction groups of the infinite dihedral group, Geom. Topol. 8 (2004) 1043 | DOI
, ,[16] Topological rigidity of actions on contractible manifolds with discrete singular set,
, , ,[17] On the dimension of the virtually cyclic classifying space of a crystallographic group,
, , ,[18] Rigidity and crystallographic groups, I, Invent. Math. 99 (1990) 25 | DOI
, ,[19] Examples of lack of rigidity in crystallographic groups, from: "Algebraic topology Poznań 1989" (editors S Jackowski, B Oliver, K Pawałowski), Lecture Notes in Math. 1474, Springer, Berlin (1991) 139 | DOI
, ,[20] Nil groups in K–theory and surgery theory, Forum Math. 7 (1995) 45 | DOI
, ,[21] On the calculation of UNil, Adv. Math. 195 (2005) 205 | DOI
, ,[22] The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. 40 (1994) 193
, ,[23] Spaces over a category and assembly maps in isomorphism conjectures in K– and L–theory, –Theory 15 (1998) 201 | DOI
, ,[24] Algebraic K–theory over the infinite dihedral group : A controlled topology approach, J. Topol. 4 (2011) 505 | DOI
, , ,[25] The exponent of UNil, Topology 18 (1979) 305 | DOI
,[26] Isomorphism conjectures in algebraic K–theory, J. Amer. Math. Soc. 6 (1993) 249 | DOI
, ,[27] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[28] Identifying assembly maps in K– and L–theory, Math. Ann. 328 (2004) 27 | DOI
, ,[29] On homotopy tori, II, Bull. London Math. Soc. 1 (1969) 341 | DOI
, ,[30] Lectures on Nielsen fixed point theory, 14, Amer. Math. Soc. (1983)
,[31] Rigidity of pseudofree group actions on contractible manifolds, RIMS Kôkyûroku Bessatsu (2013) 45
,[32] Topology, Vol. II, Academic Press (1968)
,[33] On the classifying space of the family of virtually cyclic subgroups, Pure Appl. Math. Q. 8 (2012) 497 | DOI
, ,[34] Finite group actions on 3–manifolds, Invent. Math. 86 (1986) 287 | DOI
, ,[35] Introduction to algebraic K–theory, 72, Princeton Univ. Press (1971)
,[36] Affine structures in 3–manifolds, VIII : Invariance of the knot-types ; local tame imbedding, Ann. of Math. (2) 59 (1954) 159
,[37] Equivariant rigidity theorems, New York J. Math. 10 (2004) 151
, ,[38] Rigidity of Coxeter groups, Trans. Amer. Math. Soc. 352 (2000) 2619 | DOI
, ,[39] Applications of topology with control, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2" (editor A M Gleason), Amer. Math. Soc. (1987) 598
,[40] Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988) 441 | DOI
,[41] The total surgery obstruction, from: "Algebraic topology, Aarhus 1978" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer, Berlin (1979) 275
,[42] Exact sequences in the algebraic theory of surgery, 26, Princeton Univ. Press (1981)
,[43] Algebraic L–theory and topological manifolds, 102, Cambridge Univ. Press (1992)
,[44] Rigidity theorems for right angled reflection groups, Trans. Amer. Math. Soc. 308 (1988) 837 | DOI
,[45] Heegaard splittings and a theorem of Livesay, Proc. Amer. Math. Soc. 60 (1976) 317 | DOI
,[46] Wall’s surgery obstruction groups for G × Z, Ann. of Math. 90 (1969) 296 | DOI
,[47] The obstruction to finding a boundary for an open manifold of dimension greater than five, PhD thesis, Princeton University (1965)
,[48] Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. 74 (1961) 391 | DOI
,[49] Algebraic topology, Springer (1981)
,[50] Surgery groups and inner automorphisms, from: "Algebraic –theory, III: Hermitian –theory and geometric applications", Springer, Berlin (1973) 471
,[51] Whitehead groups of generalized free products, from: "Algebraic –theory, II: “Classical” algebraic K-theory and connections with arithmetic", Springer, Berlin (1973) 155
,[52] Finiteness conditions for CW–complexes, Ann. of Math. (2) 81 (1965) 56
,[53] Surgery on compact manifolds, 69, Amer. Math. Soc. (1999) | DOI
,[54] The topological classification of stratified spaces, , Univ. of Chicago Press (1994)
,[55] Assembly, from: "Novikov conjectures, index theorems and rigidity, Vol. 2" (editors S C Ferry, A A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 227, Cambridge Univ. Press (1995) 332 | DOI
, ,[56] Manifolds with transverse fields in euclidean space, Ann. of Math. 73 (1961) 154 | DOI
,Cité par Sources :