Topological rigidity and H1–negative involutions on tori
Geometry & topology, Tome 18 (2014) no. 3, pp. 1719-1768.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show, for n 0,1(mod4) or n = 2,3, there is precisely one equivariant homeomorphism class of C2–manifolds (Nn,C2) for which Nn is homotopy equivalent to the n–torus and C2 = {1,σ} acts so that σ(x) = x for all x H1(N). If n 2,3(mod4) and n > 3, we show there are infinitely many such C2–manifolds. Each is smoothable with exactly 2n fixed points.

The key technical point is that we compute, for all n 4, the equivariant structure set STOP(n,Γn) for the corresponding crystallographic group Γn in terms of the Cappell UNil–groups arising from its infinite dihedral subgroups.

DOI : 10.2140/gt.2014.18.1719
Classification : 57S17, 57R67
Keywords: equivariant rigidity, torus, surgery

Connolly, Frank 1 ; Davis, James F 2 ; Khan, Qayum 3

1 Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, USA
2 Department of Mathematics, Indiana University, Rawles Hall, 831 E. 3 St., Bloomington, IN 47405, USA
3 Department of Mathematics, Saint Louis University, 220 North Grand Blvd, St Louis, MO 63103, USA
@article{GT_2014_18_3_a10,
     author = {Connolly, Frank and Davis, James F and Khan, Qayum},
     title = {Topological rigidity and {H1{\textendash}negative} involutions on tori},
     journal = {Geometry & topology},
     pages = {1719--1768},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1719},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/}
}
TY  - JOUR
AU  - Connolly, Frank
AU  - Davis, James F
AU  - Khan, Qayum
TI  - Topological rigidity and H1–negative involutions on tori
JO  - Geometry & topology
PY  - 2014
SP  - 1719
EP  - 1768
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/
DO  - 10.2140/gt.2014.18.1719
ID  - GT_2014_18_3_a10
ER  - 
%0 Journal Article
%A Connolly, Frank
%A Davis, James F
%A Khan, Qayum
%T Topological rigidity and H1–negative involutions on tori
%J Geometry & topology
%D 2014
%P 1719-1768
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/
%R 10.2140/gt.2014.18.1719
%F GT_2014_18_3_a10
Connolly, Frank; Davis, James F; Khan, Qayum. Topological rigidity and H1–negative involutions on tori. Geometry & topology, Tome 18 (2014) no. 3, pp. 1719-1768. doi : 10.2140/gt.2014.18.1719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1719/

[1] M T Anderson, Geometrization of 3–manifolds via the Ricci flow, Notices Amer. Math. Soc. 51 (2004) 184

[2] M Banagl, A A Ranicki, Generalized Arf invariants in algebraic L–theory, Adv. Math. 199 (2006) 542 | DOI

[3] A C Bartels, On the domain of the assembly map in algebraic K–theory, Algebr. Geom. Topol. 3 (2003) 1037 | DOI

[4] A C Bartels, W Lück, On crossed product rings with twisted involutions, their module categories and L–theory, from: "Cohomology of groups and algebraic –theory" (editors L Ji, K Liu, S T Yau), Adv. Lect. Math. (ALM), Int. Press (2010) 1

[5] A C Bartels, W Lück, The Borel conjecture for hyperbolic and CAT(0)–groups, Ann. of Math. (2) 175 (2012) 631 | DOI

[6] H Bass, Algebraic K–theory, W. A. Benjamin (1968)

[7] A Borel, Seminar on transformation groups, 46, Princeton Univ. Press (1960)

[8] G E Bredon, Sheaf theory, 170, Springer (1997) | DOI

[9] W Browder, Structures on M × R, Proc. Cambridge Philos. Soc. 61 (1965) 337

[10] S E Cappell, Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ π1, Bull. Amer. Math. Soc. 79 (1973) 909 | DOI

[11] S E Cappell, Manifolds with fundamental group a generalized free product, I, Bull. Amer. Math. Soc. 80 (1974) 1193 | DOI

[12] S E Cappell, Unitary nilpotent groups and Hermitian K–theory, I, Bull. Amer. Math. Soc. 80 (1974) 1117 | DOI

[13] S E Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69

[14] S E Cappell, S Weinberger, M Yan, Functoriality of isovariant homotopy classification,

[15] F Connolly, J F Davis, The surgery obstruction groups of the infinite dihedral group, Geom. Topol. 8 (2004) 1043 | DOI

[16] F Connolly, J F Davis, Q Khan, Topological rigidity of actions on contractible manifolds with discrete singular set,

[17] F Connolly, B Fehrman, M Hartglass, On the dimension of the virtually cyclic classifying space of a crystallographic group,

[18] F Connolly, T Koźniewski, Rigidity and crystallographic groups, I, Invent. Math. 99 (1990) 25 | DOI

[19] F Connolly, T Koźniewski, Examples of lack of rigidity in crystallographic groups, from: "Algebraic topology Poznań 1989" (editors S Jackowski, B Oliver, K Pawałowski), Lecture Notes in Math. 1474, Springer, Berlin (1991) 139 | DOI

[20] F Connolly, T Koźniewski, Nil groups in K–theory and surgery theory, Forum Math. 7 (1995) 45 | DOI

[21] F Connolly, A A Ranicki, On the calculation of UNil, Adv. Math. 195 (2005) 205 | DOI

[22] A Constantin, B Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. 40 (1994) 193

[23] J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in K– and L–theory, –Theory 15 (1998) 201 | DOI

[24] J F Davis, F Quinn, H Reich, Algebraic K–theory over the infinite dihedral group : A controlled topology approach, J. Topol. 4 (2011) 505 | DOI

[25] F T Farrell, The exponent of UNil, Topology 18 (1979) 305 | DOI

[26] F T Farrell, L E Jones, Isomorphism conjectures in algebraic K–theory, J. Amer. Math. Soc. 6 (1993) 249 | DOI

[27] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[28] I Hambleton, E K Pedersen, Identifying assembly maps in K– and L–theory, Math. Ann. 328 (2004) 27 | DOI

[29] W C Hsiang, C T C Wall, On homotopy tori, II, Bull. London Math. Soc. 1 (1969) 341 | DOI

[30] B J Jiang, Lectures on Nielsen fixed point theory, 14, Amer. Math. Soc. (1983)

[31] Q Khan, Rigidity of pseudofree group actions on contractible manifolds, RIMS Kôkyûroku Bessatsu (2013) 45

[32] K Kuratowski, Topology, Vol. II, Academic Press (1968)

[33] W Lück, M Weiermann, On the classifying space of the family of virtually cyclic subgroups, Pure Appl. Math. Q. 8 (2012) 497 | DOI

[34] W H Meeks Iii, P Scott, Finite group actions on 3–manifolds, Invent. Math. 86 (1986) 287 | DOI

[35] J Milnor, Introduction to algebraic K–theory, 72, Princeton Univ. Press (1971)

[36] E E Moise, Affine structures in 3–manifolds, VIII : Invariance of the knot-types ; local tame imbedding, Ann. of Math. (2) 59 (1954) 159

[37] G Moussong, S Prassidis, Equivariant rigidity theorems, New York J. Math. 10 (2004) 151

[38] S Prassidis, B Spieler, Rigidity of Coxeter groups, Trans. Amer. Math. Soc. 352 (2000) 2619 | DOI

[39] F Quinn, Applications of topology with control, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2" (editor A M Gleason), Amer. Math. Soc. (1987) 598

[40] F Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988) 441 | DOI

[41] A A Ranicki, The total surgery obstruction, from: "Algebraic topology, Aarhus 1978" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer, Berlin (1979) 275

[42] A A Ranicki, Exact sequences in the algebraic theory of surgery, 26, Princeton Univ. Press (1981)

[43] A A Ranicki, Algebraic L–theory and topological manifolds, 102, Cambridge Univ. Press (1992)

[44] E Rosas, Rigidity theorems for right angled reflection groups, Trans. Amer. Math. Soc. 308 (1988) 837 | DOI

[45] J H Rubinstein, Heegaard splittings and a theorem of Livesay, Proc. Amer. Math. Soc. 60 (1976) 317 | DOI

[46] J L Shaneson, Wall’s surgery obstruction groups for G × Z, Ann. of Math. 90 (1969) 296 | DOI

[47] L C Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, PhD thesis, Princeton University (1965)

[48] S Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. 74 (1961) 391 | DOI

[49] E H Spanier, Algebraic topology, Springer (1981)

[50] L R Taylor, Surgery groups and inner automorphisms, from: "Algebraic –theory, III: Hermitian –theory and geometric applications", Springer, Berlin (1973) 471

[51] F Waldhausen, Whitehead groups of generalized free products, from: "Algebraic –theory, II: “Classical” algebraic K-theory and connections with arithmetic", Springer, Berlin (1973) 155

[52] C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. (2) 81 (1965) 56

[53] C T C Wall, Surgery on compact manifolds, 69, Amer. Math. Soc. (1999) | DOI

[54] S Weinberger, The topological classification of stratified spaces, , Univ. of Chicago Press (1994)

[55] M Weiss, B Williams, Assembly, from: "Novikov conjectures, index theorems and rigidity, Vol. 2" (editors S C Ferry, A A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 227, Cambridge Univ. Press (1995) 332 | DOI

[56] J H C Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math. 73 (1961) 154 | DOI

Cité par Sources :