Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define the Hopf superalgebra , which is a variant of the quantum supergroup , and its representations for . We construct families of DG algebras , and , and consider the DG categories , and , which are full DG subcategories of the categories of DG –, – and –modules generated by certain distinguished projective modules. Their homology categories , and are triangulated and give algebraic formulations of the contact categories of an annulus, a twice punctured disk and an times punctured disk. Their Grothendieck groups are isomorphic to , and , respectively. We categorify the multiplication and comultiplication on to a bifunctor and a functor , respectively. The –action on is lifted to a bifunctor .
Tian, Yin 1
@article{GT_2014_18_3_a9, author = {Tian, Yin}, title = {A categorification of {TEXTBACKSLASHmathboldTEXTBACKSLASHUT(\ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}(1|1))} and its tensor product representations}, journal = {Geometry & topology}, pages = {1635--1717}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1635}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/} }
TY - JOUR AU - Tian, Yin TI - A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations JO - Geometry & topology PY - 2014 SP - 1635 EP - 1717 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/ DO - 10.2140/gt.2014.18.1635 ID - GT_2014_18_3_a9 ER -
%0 Journal Article %A Tian, Yin %T A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations %J Geometry & topology %D 2014 %P 1635-1717 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/ %R 10.2140/gt.2014.18.1635 %F GT_2014_18_3_a9
Tian, Yin. A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations. Geometry & topology, Tome 18 (2014) no. 3, pp. 1635-1717. doi : 10.2140/gt.2014.18.1635. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/
[1] Planar rook algebras and tensor representations of gl(1|1),
, ,[2] Equivariant sheaves and functors, 1578, Springer, Berlin (1994)
, ,[3] The Alexander and Jones polynomials through representations of rook algebras, J. Knot Theory Ramifications 21 (2012) 1250114, 18 | DOI
, , ,[4] Derived equivalences for symmetric groups and sl2–categorification, Ann. of Math. 167 (2008) 245 | DOI
, ,[5] Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994) 5136 | DOI
, ,[6] The planar rook algebra and Pascal’s triangle, Enseign. Math. (2) 55 (2009) 77
, , ,[7] Structures de contact sur les variétés fibrées en cercles audessus d’une surface, Comment. Math. Helv. 76 (2001) 218 | DOI
,[8] Contact structures, Heegaard–Floer homology and triangulated categories, in preparation
,[9] On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI
,[10] Gluing tight contact structures, Duke Math. J. 115 (2002) 435 | DOI
,[11] Pinwheels and bypasses, Algebr. Geom. Topol. 5 (2005) 769 | DOI
, , ,[12] Right-veering diffeomorphisms of compact surfaces with boundary, II, Geom. Topol. 12 (2008) 2057 | DOI
, , ,[13] The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI
, , ,[14] Bypass attachments and homotopy classes of 2–plane fields in contact topology,
,[15] Free fermions and the Alexander–Conway polynomial, Comm. Math. Phys. 141 (1991) 293
, ,[16] On differential graded categories, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc., Zürich (2006) 151
,[17] How to categorify one-half of quantum gl(1|2),
,[18] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[19] A categorification of quantum sl(n),
, ,[20] A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 | DOI
, ,[21] A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 | DOI
, ,[22] A categorification of quantum sl(2), Adv. Math. 225 (2010) 3327 | DOI
,[23] Bordered Heegaard–Floer homology : Invariance and pairing,
, , ,[24] Morse surgeries of index 0 on tight manifolds, Preprint (1997)
,[25] A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 | DOI
, , ,[26] Chord diagrams, contact-topological quantum field theory and contact categories, Algebr. Geom. Topol. 10 (2010) 2091 | DOI
,[27] Sutured TQFT, torsion and tori, Internat. J. Math. 24 (2013) 1350039, 35 | DOI
,[28] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[29] Heegaard–Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI
, ,[30] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[31] Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1
, ,[32] 2–Kac–Moody algebras,
,[33] Quantum field theory for the multivariable Alexander–Conway polynomial, Nuclear Phys. B 376 (1992) 461 | DOI
, ,[34] Categorification of tensor powers of the vector representation of Uq(gl(1|1)),
,[35] Representations of the rook monoid, J. Algebra 256 (2002) 309 | DOI
,[36] Categorical braid group actions on representations of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(sl(1|1)), in preparation
,[37] A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUq(sl(1|1)) as an algebra
,[38] Knot invariants and higher representation theory I : Diagrammatic and geometric categorification of tensor products,
,[39] Knot invariants and higher representation theory II : The categorification of quantum knot invariants,
,[40] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,[41] Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351
,[42] Bordered Floer homology for sutured manifolds,
,[43] Equivalence of gluing maps for SFH, in preparation
,Cité par Sources :