A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations
Geometry & topology, Tome 18 (2014) no. 3, pp. 1635-1717.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define the Hopf superalgebra UT(sl(1|1)), which is a variant of the quantum supergroup Uq(sl(1|1)), and its representations V 1⊗n for n > 0. We construct families of DG algebras A, B and Rn, and consider the DG categories DGP(A), DGP(B) and DGP(Rn), which are full DG subcategories of the categories of DG A–, B– and Rn–modules generated by certain distinguished projective modules. Their 0 th homology categories HP(A), HP(B) and HP(Rn) are triangulated and give algebraic formulations of the contact categories of an annulus, a twice punctured disk and an n times punctured disk. Their Grothendieck groups are isomorphic to UT(sl(1|1)), UT(sl(1|1)) ⊗ℤUT(sl(1|1)) and V 1⊗n, respectively. We categorify the multiplication and comultiplication on UT(sl(1|1)) to a bifunctor HP(A) × HP(A) → HP(A) and a functor HP(A) → HP(B), respectively. The UT(sl(1|1))–action on V 1⊗n is lifted to a bifunctor HP(A) × HP(Rn) → HP(Rn).

DOI : 10.2140/gt.2014.18.1635
Classification : 18D10, 16D20, 57M50
Keywords: Hopf superalgebra, categorification, tight contact structure, Heegaard Floer homology

Tian, Yin 1

1 Department of Mathematics, University of Southern California, 3620 S Vermont Ave., KAP 104, Los Angeles, CA 90089, USA
@article{GT_2014_18_3_a9,
     author = {Tian, Yin},
     title = {A categorification of {TEXTBACKSLASHmathboldTEXTBACKSLASHUT(\ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{l}}(1|1))} and its tensor product representations},
     journal = {Geometry & topology},
     pages = {1635--1717},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1635},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/}
}
TY  - JOUR
AU  - Tian, Yin
TI  - A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations
JO  - Geometry & topology
PY  - 2014
SP  - 1635
EP  - 1717
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/
DO  - 10.2140/gt.2014.18.1635
ID  - GT_2014_18_3_a9
ER  - 
%0 Journal Article
%A Tian, Yin
%T A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations
%J Geometry & topology
%D 2014
%P 1635-1717
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/
%R 10.2140/gt.2014.18.1635
%F GT_2014_18_3_a9
Tian, Yin. A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(𝔰𝔩(1|1)) and its tensor product representations. Geometry & topology, Tome 18 (2014) no. 3, pp. 1635-1717. doi : 10.2140/gt.2014.18.1635. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1635/

[1] G Benkart, D Moon, Planar rook algebras and tensor representations of gl(1|1),

[2] J Bernstein, V Lunts, Equivariant sheaves and functors, 1578, Springer, Berlin (1994)

[3] S Bigelow, E Ramos, R Yi, The Alexander and Jones polynomials through representations of rook algebras, J. Knot Theory Ramifications 21 (2012) 1250114, 18 | DOI

[4] J Chuang, R Rouquier, Derived equivalences for symmetric groups and sl2–categorification, Ann. of Math. 167 (2008) 245 | DOI

[5] L Crane, I B Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994) 5136 | DOI

[6] D Flath, T Halverson, K Herbig, The planar rook algebra and Pascal’s triangle, Enseign. Math. (2) 55 (2009) 77

[7] E Giroux, Structures de contact sur les variétés fibrées en cercles audessus d’une surface, Comment. Math. Helv. 76 (2001) 218 | DOI

[8] K Honda, Contact structures, Heegaard–Floer homology and triangulated categories, in preparation

[9] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[10] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435 | DOI

[11] K Honda, W H Kazez, G Matić, Pinwheels and bypasses, Algebr. Geom. Topol. 5 (2005) 769 | DOI

[12] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, II, Geom. Topol. 12 (2008) 2057 | DOI

[13] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI

[14] Y Huang, Bypass attachments and homotopy classes of 2–plane fields in contact topology,

[15] L H Kauffman, H Saleur, Free fermions and the Alexander–Conway polynomial, Comm. Math. Phys. 141 (1991) 293

[16] B Keller, On differential graded categories, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc., Zürich (2006) 151

[17] M Khovanov, How to categorify one-half of quantum gl(1|2),

[18] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[19] M Khovanov, A D Lauda, A categorification of quantum sl(n),

[20] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009) 309 | DOI

[21] M Khovanov, A D Lauda, A diagrammatic approach to categorification of quantum groups, II, Trans. Amer. Math. Soc. 363 (2011) 2685 | DOI

[22] A D Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2010) 3327 | DOI

[23] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard–Floer homology : Invariance and pairing,

[24] S Makar-Limanov, Morse surgeries of index 0 on tight manifolds, Preprint (1997)

[25] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 | DOI

[26] D Mathews, Chord diagrams, contact-topological quantum field theory and contact categories, Algebr. Geom. Topol. 10 (2010) 2091 | DOI

[27] D V Mathews, Sutured TQFT, torsion and tori, Internat. J. Math. 24 (2013) 1350039, 35 | DOI

[28] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[29] P Ozsváth, Z Szabó, Heegaard–Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI

[30] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[31] N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1

[32] R Rouquier, 2–Kac–Moody algebras,

[33] L Rozansky, H Saleur, Quantum field theory for the multivariable Alexander–Conway polynomial, Nuclear Phys. B 376 (1992) 461 | DOI

[34] A Sartori, Categorification of tensor powers of the vector representation of Uq(gl(1|1)),

[35] L Solomon, Representations of the rook monoid, J. Algebra 256 (2002) 309 | DOI

[36] Y Tian, Categorical braid group actions on representations of TEXTBACKSLASHmathboldTEXTBACKSLASHUT(sl(1|1)), in preparation

[37] Y Tian, A categorification of TEXTBACKSLASHmathboldTEXTBACKSLASHUq(sl(1|1)) as an algebra

[38] B Webster, Knot invariants and higher representation theory I : Diagrammatic and geometric categorification of tensor products,

[39] B Webster, Knot invariants and higher representation theory II : The categorification of quantum knot invariants,

[40] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

[41] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

[42] R Zarev, Bordered Floer homology for sutured manifolds,

[43] R Zarev, Equivalence of gluing maps for SFH, in preparation

Cité par Sources :