Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study open book foliations on surfaces in –manifolds and give applications to contact geometry of dimension . We prove a braid-theoretic formula for the self-linking number of transverse links, which reveals an unexpected connection with to the Johnson–Morita homomorphism in mapping class group theory. We also give an alternative combinatorial proof of the Bennequin–Eliashberg inequality.
Ito, Tetsuya 1 ; Kawamuro, Keiko 2
@article{GT_2014_18_3_a8, author = {Ito, Tetsuya and Kawamuro, Keiko}, title = {Open book foliation}, journal = {Geometry & topology}, pages = {1581--1634}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1581}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1581/} }
Ito, Tetsuya; Kawamuro, Keiko. Open book foliation. Geometry & topology, Tome 18 (2014) no. 3, pp. 1581-1634. doi : 10.2140/gt.2014.18.1581. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1581/
[1] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1", Astérisque 107, Soc. Math. France (1983) 87
,[2] Braids, links, and mapping class groups, 82, Princeton Univ. Press (1974)
,[3] Studying surfaces via closed braids, J. Knot Theory Ramifications 7 (1998) 267 | DOI
, ,[4] A new algorithm for recognizing the unknot, Geom. Topol. 2 (1998) 175 | DOI
, ,[5] Studying links via closed braids, IV : Composite links and split links, Invent. Math. 102 (1990) 115 | DOI
, ,[6] Studying links via closed braids, II : On a theorem of Bennequin, Topology Appl. 40 (1991) 71 | DOI
, ,[7] Studying links via closed braids, I : A finiteness theorem, Pacific J. Math. 154 (1992) 17
, ,[8] Studying links via closed braids, V : The unlink, Trans. Amer. Math. Soc. 329 (1992) 585 | DOI
, ,[9] Studying links via closed braids, VI : A nonfiniteness theorem, Pacific J. Math. 156 (1992) 265
, ,[10] Studying links via closed braids, III : Classifying links which are closed 3–braids, Pacific J. Math. 161 (1993) 25
, ,[11] Stabilization in the braid groups, I : MTWS, Geom. Topol. 10 (2006) 413 | DOI
, ,[12] Stabilization in the braid groups, II : Transversal simplicity of knots, Geom. Topol. 10 (2006) 1425 | DOI
, ,[13] A note on closed 3–braids, Commun. Contemp. Math. 10 (2008) 1033 | DOI
, ,[14] On transversally simple knots, J. Differential Geom. 55 (2000) 325
, ,[15] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI
,[16] Contact 3–manifolds twenty years since J Martinet’s work, Ann. Inst. Fourier Grenoble 42 (1992) 165
,[17] Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics" (editor F Lalonde), CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17
, ,[18] Legendrian and transversal knots, from: "Handbook of knot theory" (editors W W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI
,[19] On the nonexistence of tight contact structures, Ann. of Math. 153 (2001) 749 | DOI
, ,[20] Cabling and transverse simplicity, Ann. of Math. 162 (2005) 1305 | DOI
, ,[21] Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008) 3133 | DOI
, ,[22] Fibered transverse knots and the Bennequin bound, Int. Math. Res. Not. 2011 (2011) 1483 | DOI
, ,[23] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[24] Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637 | DOI
,[25] Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI
,[26] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editor T Li), Higher Ed. Press (2002) 405
,[27] Differential topology, 33, Springer (1976)
,[28] On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI
,[29] Essential open book foliation and fractional Dehn twist coefficient
, ,[30] Operations on open book foliations
, ,[31] The structure of the Torelli group, II : A characterization of the group generated by twists on bounding curves, Topology 24 (1985) 113 | DOI
,[32] The self-linking number in planar open book decompositions, Math. Res. Lett. 19 (2012) 41 | DOI
,[33] The self-linking number in annulus and pants open book decompositions, Algebr. Geom. Topol. 11 (2011) 553 | DOI
, ,[34] Climbing a Legendrian mountain range without stabilization (2009)
, ,[35] Convergence of contact structures to foliations, from: "Foliations 2005" (editors P Walczak, R Langevin, S Hurder, T Tsuboi), World Sci. Publ. (2006) 353 | DOI
,[36] Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier Grenoble 39 (1989) 777
,[37] Mapping class groups of surfaces and three-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. I, II" (editor I Satake), Math. Soc. Japan (1991) 665
,[38] The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993) 197 | DOI
,[39] Braids and open book decompositions, PhD thesis, University of Pennsylvania (2008)
,[40] Braiding knots in contact 3–manifolds, Pacific J. Math. 253 (2011) 475 | DOI
,[41] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,[42] On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345 | DOI
, ,[43] A linear representation of the mapping class group M and the theory of winding numbers, Topology Appl. 43 (1992) 47 | DOI
,Cité par Sources :