Covering link calculus and the bipolar filtration of topologically slice links
Geometry & topology, Tome 18 (2014) no. 3, pp. 1539-1579.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The bipolar filtration introduced by T Cochran, S Harvey and P Horn is a framework for the study of smooth concordance of topologically slice knots and links. It is known that there are topologically slice 1–bipolar knots which are not 2–bipolar. For knots, this is the highest known level at which the filtration does not stabilize. For the case of links with two or more components, we prove that the filtration does not stabilize at any level: for any n, there are topologically slice links which are n–bipolar but not (n + 1)–bipolar. In the proof we describe an explicit geometric construction which raises the bipolar height of certain links exactly by one. We show this using the covering link calculus. Furthermore we discover that the bipolar filtration of the group of topologically slice string links modulo smooth concordance has a rich algebraic structure.

DOI : 10.2140/gt.2014.18.1539
Classification : 57M25, 57N70
Keywords: covering link calculus, concordance, bipolar filtration

Cha, Jae Choon 1 ; Powell, Mark 2

1 Department of Mathematics, Pohang University of Science and Technology, Gyungbuk, Pohang 790-784, South Korea, and, School of Mathematics, Korea Institute for Advanced Study, Seoul 130–722, South Korea
2 Department of Mathematics, Indiana University, Rawles Hall, 831 East 3rd Street, Bloomington, IN 47405, USA
@article{GT_2014_18_3_a7,
     author = {Cha, Jae Choon and Powell, Mark},
     title = {Covering link calculus and the bipolar filtration of topologically slice links},
     journal = {Geometry & topology},
     pages = {1539--1579},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1539},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1539/}
}
TY  - JOUR
AU  - Cha, Jae Choon
AU  - Powell, Mark
TI  - Covering link calculus and the bipolar filtration of topologically slice links
JO  - Geometry & topology
PY  - 2014
SP  - 1539
EP  - 1579
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1539/
DO  - 10.2140/gt.2014.18.1539
ID  - GT_2014_18_3_a7
ER  - 
%0 Journal Article
%A Cha, Jae Choon
%A Powell, Mark
%T Covering link calculus and the bipolar filtration of topologically slice links
%J Geometry & topology
%D 2014
%P 1539-1579
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1539/
%R 10.2140/gt.2014.18.1539
%F GT_2014_18_3_a7
Cha, Jae Choon; Powell, Mark. Covering link calculus and the bipolar filtration of topologically slice links. Geometry & topology, Tome 18 (2014) no. 3, pp. 1539-1579. doi : 10.2140/gt.2014.18.1539. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1539/

[1] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181

[2] J C Cha, Amenable L2–theoretic methods and knot concordance,

[3] J C Cha, The structure of the rational concordance group of knots, 189 (2007) | DOI

[4] J C Cha, Structure of the string link concordance group and Hirzebruch-type invariants, Indiana Univ. Math. J. 58 (2009) 891 | DOI

[5] J C Cha, T Kim, Covering link calculus and iterated Bing doubles, Geom. Topol. 12 (2008) 2173 | DOI

[6] J C Cha, K H Ko, Signatures of links in rational homology spheres, Topology 41 (2002) 1161 | DOI

[7] J C Cha, C Livingston, D Ruberman, Algebraic and Heegaard–Floer invariants of knots with slice Bing doubles, Math. Proc. Cambridge Philos. Soc. 144 (2008) 403 | DOI

[8] T D Cochran, S Harvey, Homology and derived p–series of groups, J. Lond. Math. Soc. 78 (2008) 677 | DOI

[9] T D Cochran, S Harvey, P Horn, Filtering smooth concordance classes of topologically slice knots, Geom. Topol. 17 (2013) 2103 | DOI

[10] T D Cochran, P D Horn, Structure in the bipolar filtration of topologically slice knots,

[11] T D Cochran, W B R Lickorish, Unknotting information from 4–manifolds, Trans. Amer. Math. Soc. 297 (1986) 125 | DOI

[12] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 | DOI

[13] N Habegger, X S Lin, On link concordance and Milnor’s μ invariants, Bull. London Math. Soc. 30 (1998) 419 | DOI

[14] M Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007) 2277 | DOI

[15] M Hedden, P Kirk, Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012) 281

[16] M Hedden, C Livingston, D Ruberman, Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012) 913 | DOI

[17] J Hom, The knot Floer complex and the smooth concordance group,

[18] A S Levine, Slicing mixed Bing–Whitehead doubles, J. Topol. 5 (2012) 713 | DOI

[19] C Livingston, C A Van Cott, Concordance of Bing doubles and boundary genus, Math. Proc. Cambridge Philos. Soc. 151 (2011) 459 | DOI

[20] C Manolescu, B Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. 2007 (2007) | DOI

[21] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI

[22] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[23] J A Rasmussen, Floer homology and knot complements, Ph.D. thesis, Harvard University (2003)

[24] C A Van Cott, An obstruction to slicing iterated Bing doubles, J. Knot Theory Ramifications 22 (2013) | DOI

[25] O J Viro, Branched coverings of manifolds with boundary, and invariants of links, I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 1241

Cité par Sources :