An analytic family of representations for the mapping class group of punctured surfaces
Geometry & topology, Tome 18 (2014) no. 3, pp. 1485-1538.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use quantum invariants to define an analytic family of representations for the mapping class group Mod(Σ) of a punctured surface Σ. The representations depend on a complex number A with |A| 1 and act on an infinite-dimensional Hilbert space. They are unitary when A is real or imaginary, bounded when |A| < 1, and only densely defined when |A| = 1 and A is not a root of unity. When A is a root of unity distinct from ± 1 and ± i the representations are finite-dimensional and isomorphic to the “Hom” version of the well-known TQFT quantum representations.

The unitary representations in the interval [1,0] interpolate analytically between two natural geometric unitary representations, the SU(2)–character variety representation studied by Goldman and the multicurve representation induced by the action of Mod(Σ) on multicurves.

The finite-dimensional representations converge analytically to the infinite-dimensional ones. We recover Marché and Narimannejad’s convergence theorem, and Andersen, Freedman, Walker and Wang’s asymptotic faithfulness, that states that the image of a noncentral mapping class is always nontrivial after some level r0. When the mapping class is pseudo-Anosov we give a simple polynomial estimate of the level r0 in terms of its dilatation.

DOI : 10.2140/gt.2014.18.1485
Classification : 57R56, 57M27, 22D10
Keywords: quantum invariants, mapping class groups, representations in Hilbert space

Costantino, Francesco 1 ; Martelli, Bruno 2

1 Institut de Recherche Mathématique Avancée, Rue René Descartes 7, 67087 Strasbourg, France
2 Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy
@article{GT_2014_18_3_a6,
     author = {Costantino, Francesco and Martelli, Bruno},
     title = {An analytic family of representations for the mapping class group of punctured surfaces},
     journal = {Geometry & topology},
     pages = {1485--1538},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1485},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/}
}
TY  - JOUR
AU  - Costantino, Francesco
AU  - Martelli, Bruno
TI  - An analytic family of representations for the mapping class group of punctured surfaces
JO  - Geometry & topology
PY  - 2014
SP  - 1485
EP  - 1538
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/
DO  - 10.2140/gt.2014.18.1485
ID  - GT_2014_18_3_a6
ER  - 
%0 Journal Article
%A Costantino, Francesco
%A Martelli, Bruno
%T An analytic family of representations for the mapping class group of punctured surfaces
%J Geometry & topology
%D 2014
%P 1485-1538
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/
%R 10.2140/gt.2014.18.1485
%F GT_2014_18_3_a6
Costantino, Francesco; Martelli, Bruno. An analytic family of representations for the mapping class group of punctured surfaces. Geometry & topology, Tome 18 (2014) no. 3, pp. 1485-1538. doi : 10.2140/gt.2014.18.1485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/

[1] J E Andersen, Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups, Ann. of Math. 163 (2006) 347 | DOI

[2] T M Apostol, Introduction to analytic number theory, Springer (1976)

[3] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 | DOI

[4] D Bullock, Rings of SL2(C)–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 | DOI

[5] D Bullock, C Frohman, J Kania-Bartoszyńska, The Yang–Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1 | DOI

[6] M Burger, P De La Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 223 | DOI

[7] L Charles, J Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012) 409 | DOI

[8] F Costantino, J Marché, Generating series and asymptotics of classical spin networks, to appear in Journal of Europ. Math. Soc.

[9] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[10] M H Freedman, K Walker, Z Wang, Quantum SU(2) faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002) 523 | DOI

[11] C Frohman, J Kania-Bartoszyńska, The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005 | DOI

[12] W M Goldman, The mapping class group acts reducibly on SU(n)–character varieties, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 115 | DOI

[13] E Guentner, N Higson, Weak amenability of CAT(0)–cubical groups, Geom. Dedicata 148 (2010) 137 | DOI

[14] J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Experiment. Math. 16 (2007) 167

[15] J Hoste, J H Przytycki, The Kauffman bracket skein module of S1 × S2, Math. Z. 220 (1995) 65 | DOI

[16] T Januszkiewicz, For right-angled Coxeter groups z|g| is a coefficient of a uniformly bounded representation, Proc. Amer. Math. Soc. 119 (1993) 1115 | DOI

[17] L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 | DOI

[18] L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of 3–manifolds, 134, Princeton Univ. Press (1994)

[19] A N Kirillov, N Y Reshetikhin, Representations of the algebra Uq(sl2), q–orthogonal polynomials and invariants of links, from: "Infinite-dimensional Lie algebras and groups" (editor V G Kac), Adv. Ser. Math. Phys. 7, World Sci. Publ. (1989) 285

[20] W B R Lickorish, Three-manifolds and the Temperley–Lieb algebra, Math. Ann. 290 (1991) 657 | DOI

[21] W B R Lickorish, Skeins and handlebodies, Pacific J. Math. 159 (1993) 337

[22] W B R Lickorish, An introduction to knot theory, 175, Springer (1997) | DOI

[23] G W Mackey, The theory of unitary group representations, University of Chicago Press (1976)

[24] J Marché, The Kauffman skein algebra of a surface at , Math. Ann. 351 (2011) 347 | DOI

[25] J Marché, M Narimannejad, Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008) 573 | DOI

[26] G Masbaum, P Vogel, 3–valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361

[27] A Papadopoulos, R C Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987) 359

[28] L Paris, Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002) 301 | DOI

[29] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 | DOI

[30] R C Penner, Universal constructions in Teichmüller theory, Adv. Math. 98 (1993) 143 | DOI

[31] M V Pimsner, Cocycles on trees, J. Operator Theory 17 (1987) 121

[32] J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91

[33] J H Przytycki, Kauffman bracket skein module of a connected sum of 3–manifolds, Manuscripta Math. 101 (2000) 199 | DOI

[34] T Pytlik, R Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986) 287 | DOI

[35] J Roberts, Quantum invariants and skein theory, PhD thesis, University of Cambridge (1994)

[36] A S Sikora, Skein modules and TQFT, from: "Knots in Hellas ’98 (Delphi)" (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. Publ. (2000) 436 | DOI

[37] A Valette, Cocycles d’arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 703

Cité par Sources :