Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use quantum invariants to define an analytic family of representations for the mapping class group of a punctured surface . The representations depend on a complex number with and act on an infinite-dimensional Hilbert space. They are unitary when is real or imaginary, bounded when , and only densely defined when and is not a root of unity. When is a root of unity distinct from and the representations are finite-dimensional and isomorphic to the “Hom” version of the well-known TQFT quantum representations.
The unitary representations in the interval interpolate analytically between two natural geometric unitary representations, the –character variety representation studied by Goldman and the multicurve representation induced by the action of on multicurves.
The finite-dimensional representations converge analytically to the infinite-dimensional ones. We recover Marché and Narimannejad’s convergence theorem, and Andersen, Freedman, Walker and Wang’s asymptotic faithfulness, that states that the image of a noncentral mapping class is always nontrivial after some level . When the mapping class is pseudo-Anosov we give a simple polynomial estimate of the level in terms of its dilatation.
Costantino, Francesco 1 ; Martelli, Bruno 2
@article{GT_2014_18_3_a6, author = {Costantino, Francesco and Martelli, Bruno}, title = {An analytic family of representations for the mapping class group of punctured surfaces}, journal = {Geometry & topology}, pages = {1485--1538}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1485}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/} }
TY - JOUR AU - Costantino, Francesco AU - Martelli, Bruno TI - An analytic family of representations for the mapping class group of punctured surfaces JO - Geometry & topology PY - 2014 SP - 1485 EP - 1538 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/ DO - 10.2140/gt.2014.18.1485 ID - GT_2014_18_3_a6 ER -
%0 Journal Article %A Costantino, Francesco %A Martelli, Bruno %T An analytic family of representations for the mapping class group of punctured surfaces %J Geometry & topology %D 2014 %P 1485-1538 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/ %R 10.2140/gt.2014.18.1485 %F GT_2014_18_3_a6
Costantino, Francesco; Martelli, Bruno. An analytic family of representations for the mapping class group of punctured surfaces. Geometry & topology, Tome 18 (2014) no. 3, pp. 1485-1538. doi : 10.2140/gt.2014.18.1485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1485/
[1] Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups, Ann. of Math. 163 (2006) 347 | DOI
,[2] Introduction to analytic number theory, Springer (1976)
,[3] Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 | DOI
, , , ,[4] Rings of SL2(C)–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 | DOI
,[5] The Yang–Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1 | DOI
, , ,[6] Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997) 223 | DOI
, ,[7] Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012) 409 | DOI
, ,[8] Generating series and asymptotics of classical spin networks, to appear in Journal of Europ. Math. Soc.
, ,[9] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[10] Quantum SU(2) faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002) 523 | DOI
, , ,[11] The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005 | DOI
, ,[12] The mapping class group acts reducibly on SU(n)–character varieties, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 115 | DOI
,[13] Weak amenability of CAT(0)–cubical groups, Geom. Dedicata 148 (2010) 137 | DOI
, ,[14] The minimum dilatation of pseudo-Anosov 5–braids, Experiment. Math. 16 (2007) 167
, ,[15] The Kauffman bracket skein module of S1 × S2, Math. Z. 220 (1995) 65 | DOI
, ,[16] For right-angled Coxeter groups z|g| is a coefficient of a uniformly bounded representation, Proc. Amer. Math. Soc. 119 (1993) 1115 | DOI
,[17] State models and the Jones polynomial, Topology 26 (1987) 395 | DOI
,[18] Temperley–Lieb recoupling theory and invariants of 3–manifolds, 134, Princeton Univ. Press (1994)
, ,[19] Representations of the algebra Uq(sl2), q–orthogonal polynomials and invariants of links, from: "Infinite-dimensional Lie algebras and groups" (editor V G Kac), Adv. Ser. Math. Phys. 7, World Sci. Publ. (1989) 285
, ,[20] Three-manifolds and the Temperley–Lieb algebra, Math. Ann. 290 (1991) 657 | DOI
,[21] Skeins and handlebodies, Pacific J. Math. 159 (1993) 337
,[22] An introduction to knot theory, 175, Springer (1997) | DOI
,[23] The theory of unitary group representations, University of Chicago Press (1976)
,[24] The Kauffman skein algebra of a surface at , Math. Ann. 351 (2011) 347 | DOI
,[25] Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008) 573 | DOI
, ,[26] 3–valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994) 361
, ,[27] A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987) 359
, ,[28] Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002) 301 | DOI
,[29] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 | DOI
,[30] Universal constructions in Teichmüller theory, Adv. Math. 98 (1993) 143 | DOI
,[31] Cocycles on trees, J. Operator Theory 17 (1987) 121
,[32] Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91
,[33] Kauffman bracket skein module of a connected sum of 3–manifolds, Manuscripta Math. 101 (2000) 199 | DOI
,[34] An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986) 287 | DOI
, ,[35] Quantum invariants and skein theory, PhD thesis, University of Cambridge (1994)
,[36] Skein modules and TQFT, from: "Knots in Hellas ’98 (Delphi)" (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. Publ. (2000) 436 | DOI
,[37] Cocycles d’arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 703
,Cité par Sources :