A mirror theorem for the mirror quintic
Geometry & topology, Tome 18 (2014) no. 3, pp. 1437-1483.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The celebrated Mirror theorem states that the genus zero part of the A model (quantum cohomology, rational curves counting) of the Fermat quintic threefold is equivalent to the B model (complex deformation, variation of Hodge structure) of its mirror dual orbifold. In this article, we establish a mirror-dual statement. Namely, the B model of the Fermat quintic threefold is shown to be equivalent to the A model of its mirror, and hence establishes the mirror symmetry as a true duality.

DOI : 10.2140/gt.2014.18.1437
Classification : 14N35, 53D45
Keywords: mirror symmetry, mirror theorem

Lee, Yuan-Pin 1 ; Shoemaker, Mark 1

1 Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT 84112-0090, USA
@article{GT_2014_18_3_a5,
     author = {Lee, Yuan-Pin and Shoemaker, Mark},
     title = {A mirror theorem for the mirror quintic},
     journal = {Geometry & topology},
     pages = {1437--1483},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1437},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/}
}
TY  - JOUR
AU  - Lee, Yuan-Pin
AU  - Shoemaker, Mark
TI  - A mirror theorem for the mirror quintic
JO  - Geometry & topology
PY  - 2014
SP  - 1437
EP  - 1483
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/
DO  - 10.2140/gt.2014.18.1437
ID  - GT_2014_18_3_a5
ER  - 
%0 Journal Article
%A Lee, Yuan-Pin
%A Shoemaker, Mark
%T A mirror theorem for the mirror quintic
%J Geometry & topology
%D 2014
%P 1437-1483
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/
%R 10.2140/gt.2014.18.1437
%F GT_2014_18_3_a5
Lee, Yuan-Pin; Shoemaker, Mark. A mirror theorem for the mirror quintic. Geometry & topology, Tome 18 (2014) no. 3, pp. 1437-1483. doi : 10.2140/gt.2014.18.1437. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/

[1] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI

[2] V V Batyrev, Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994) 493

[3] A Bertram, Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487 | DOI

[4] R L Bryant, P A Griffiths, Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, from: "Arithmetic and geometry, Vol. II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 77

[5] P Candelas, X C De La Ossa, P S Green, L Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21 | DOI

[6] P Candelas, X De La Ossa, F Rodriguez-Villegas, Calabi–Yau manifolds over finite fields, I,

[7] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[8] W Chen, Y Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1 | DOI

[9] T Coates, A Corti, H Iritani, H H Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI

[10] T Coates, Y P Lee, A Corti, H H Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009) 139 | DOI

[11] D A Cox, S Katz, Mirror symmetry and algebraic geometry, 68, Amer. Math. Soc. (1999)

[12] D A Cox, S Katz, Y P Lee, Virtual fundamental classes of zero loci, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math., Amer. Math. Soc. (2001) 157 | DOI

[13] P Deligne, Équations différentielles à points singuliers réguliers, 163, Springer (1970)

[14] C Doran, B Greene, S Judes, Families of quintic Calabi–Yau 3–folds with discrete symmetries, Comm. Math. Phys. 280 (2008) 675 | DOI

[15] A B Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices (1996) 613 | DOI

[16] A B Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141

[17] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[18] B R Greene, M R Plesser, Duality in Calabi–Yau moduli space, Nuclear Phys. B 338 (1990) 15 | DOI

[19] P A Griffiths, On the periods of certain rational integrals, I, II, Ann. of Math. 90 (1969) 496

[20] P A Griffiths, editor, Topics in transcendental algebraic geometry, 106, Princeton Univ. Press (1984)

[21] H Iritani, Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011) 2909

[22] B H Lian, K Liu, S T Yau, Mirror principle, I, Asian J. Math. 1 (1997) 729

[23] C C M Liu, Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of Moduli, Vol. II", Adv. Lect. Math. 25, Int. Press (2013) 353

[24] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI

[25] E Witten, Mirror manifolds and topological field theory, from: "Essays on mirror manifolds" (editor S T Yau), Int. Press (1992) 120

Cité par Sources :