Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The celebrated Mirror theorem states that the genus zero part of the model (quantum cohomology, rational curves counting) of the Fermat quintic threefold is equivalent to the model (complex deformation, variation of Hodge structure) of its mirror dual orbifold. In this article, we establish a mirror-dual statement. Namely, the model of the Fermat quintic threefold is shown to be equivalent to the model of its mirror, and hence establishes the mirror symmetry as a true duality.
Lee, Yuan-Pin 1 ; Shoemaker, Mark 1
@article{GT_2014_18_3_a5, author = {Lee, Yuan-Pin and Shoemaker, Mark}, title = {A mirror theorem for the mirror quintic}, journal = {Geometry & topology}, pages = {1437--1483}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1437}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/} }
Lee, Yuan-Pin; Shoemaker, Mark. A mirror theorem for the mirror quintic. Geometry & topology, Tome 18 (2014) no. 3, pp. 1437-1483. doi : 10.2140/gt.2014.18.1437. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1437/
[1] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI
, , ,[2] Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994) 493
,[3] Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487 | DOI
,[4] Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, from: "Arithmetic and geometry, Vol. II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 77
, ,[5] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21 | DOI
, , , ,[6] Calabi–Yau manifolds over finite fields, I,
, , ,[7] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI
, ,[8] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1 | DOI
, ,[9] Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI
, , , ,[10] The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009) 139 | DOI
, , , ,[11] Mirror symmetry and algebraic geometry, 68, Amer. Math. Soc. (1999)
, ,[12] Virtual fundamental classes of zero loci, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math., Amer. Math. Soc. (2001) 157 | DOI
, , ,[13] Équations différentielles à points singuliers réguliers, 163, Springer (1970)
,[14] Families of quintic Calabi–Yau 3–folds with discrete symmetries, Comm. Math. Phys. 280 (2008) 675 | DOI
, , ,[15] Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices (1996) 613 | DOI
,[16] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141
,[17] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[18] Duality in Calabi–Yau moduli space, Nuclear Phys. B 338 (1990) 15 | DOI
, ,[19] On the periods of certain rational integrals, I, II, Ann. of Math. 90 (1969) 496
,[20] Topics in transcendental algebraic geometry, 106, Princeton Univ. Press (1984)
, editor,[21] Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011) 2909
,[22] Mirror principle, I, Asian J. Math. 1 (1997) 729
, , ,[23] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of Moduli, Vol. II", Adv. Lect. Math. 25, Int. Press (2013) 353
,[24] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI
,[25] Mirror manifolds and topological field theory, from: "Essays on mirror manifolds" (editor S T Yau), Int. Press (1992) 120
,Cité par Sources :