Nonnegatively curved 5–manifolds with almost maximal symmetry rank
Geometry & topology, Tome 18 (2014) no. 3, pp. 1397-1435.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a closed, simply connected, nonnegatively curved 5–manifold admitting an effective, isometric T2 action is diffeomorphic to one of S5,S3 × S2, S3×̃S2 or the Wu manifold SU(3)SO(3).

DOI : 10.2140/gt.2014.18.1397
Classification : 53C20, 57S25, 51M25
Keywords: symmetry rank, nonnegative curvature, $5$–manifold, torus action

Galaz-Garcia, Fernando 1 ; Searle, Catherine 2

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinst. 62, D-48149 Münster, Germany
2 Department of Mathematics, Oregon State University, 368 Kidder Hall, Corvallis, Oregon 97331, USA
@article{GT_2014_18_3_a4,
     author = {Galaz-Garcia, Fernando and Searle, Catherine},
     title = {Nonnegatively curved 5{\textendash}manifolds with almost maximal symmetry rank},
     journal = {Geometry & topology},
     pages = {1397--1435},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1397},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/}
}
TY  - JOUR
AU  - Galaz-Garcia, Fernando
AU  - Searle, Catherine
TI  - Nonnegatively curved 5–manifolds with almost maximal symmetry rank
JO  - Geometry & topology
PY  - 2014
SP  - 1397
EP  - 1435
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/
DO  - 10.2140/gt.2014.18.1397
ID  - GT_2014_18_3_a4
ER  - 
%0 Journal Article
%A Galaz-Garcia, Fernando
%A Searle, Catherine
%T Nonnegatively curved 5–manifolds with almost maximal symmetry rank
%J Geometry & topology
%D 2014
%P 1397-1435
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/
%R 10.2140/gt.2014.18.1397
%F GT_2014_18_3_a4
Galaz-Garcia, Fernando; Searle, Catherine. Nonnegatively curved 5–manifolds with almost maximal symmetry rank. Geometry & topology, Tome 18 (2014) no. 3, pp. 1397-1435. doi : 10.2140/gt.2014.18.1397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/

[1] D Barden, Simply connected 5–manifolds, Ann. of Math. 82 (1965) 365 | DOI

[2] G E Bredon, Introduction to compact transformation groups, 46, Academic Press (1972)

[3] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001)

[4] Y Burago, M Gromov, G Perelman, AD Aleksandrov’s spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222 | DOI

[5] T Chang, T Skjelbred, Group actions on Poincaré duality spaces, Bull. Amer. Math. Soc. 78 (1972) 1024 | DOI

[6] J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea Publishing (2008)

[7] J Devito, The classification of simply connected biquotients of dimension at most 7 and 3 new examples of almost positively curved manifolds, PhD thesis, University of Pennsylvania (2011)

[8] R Diestel, Graph theory, 173, Springer (2005)

[9] J Dinkelbach, B Leeb, Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3–manifolds, Geom. Topol. 13 (2009) 1129 | DOI

[10] H Duan, C Liang, Circle bundles over 4–manifolds, Arch. Math. (Basel) 85 (2005) 278 | DOI

[11] R Fintushel, Circle actions on simply connected 4–manifolds, Trans. Amer. Math. Soc. 230 (1977) 147 | DOI

[12] R Fintushel, Classification of circle actions on 4–manifolds, Trans. Amer. Math. Soc. 242 (1978) 377 | DOI

[13] F Galaz-Garcia, Nonnegatively curved fixed point homogeneous manifolds in low dimensions, Geom. Dedicata 157 (2012) 367 | DOI

[14] F Galaz-Garcia, M Kerin, Cohomogeneity–two torus actions on nonnegatively curved manifolds of low dimension, Math. Z. 276 (2014) 133 | DOI

[15] F Galaz-Garcia, C Searle, Low-dimensional manifolds with nonnegative curvature and maximal symmetry rank, Proc. Amer. Math. Soc. 139 (2011) 2559 | DOI

[16] F Galaz-Garcia, W Spindeler, Nonnegatively curved fixed point homogeneous 5–manifolds, Ann. Global Anal. Geom. 41 (2012) 253 | DOI

[17] F Galaz-Garcia, W Spindeler, Erratum to : Nonnegatively curved fixed point homogeneous 5–manifolds, Ann. Global Anal. Geom. 45 (2014) 151 | DOI

[18] J C Gómez-Larrañaga, F González-Acuña, W Heil, S2– and P2–category of manifolds, Topology Appl. 159 (2012) 1052 | DOI

[19] J L Gross, J Yellen, editors, Handbook of graph theory, CRC Press (2004)

[20] K Grove, Geometry of, and via, symmetries, from: "Conformal, Riemannian and Lagrangian geometry", Univ. Lecture Ser. 27, Amer. Math. Soc. (2002) 31

[21] K Grove, Developments around positive sectional curvature, from: "Geometry, analysis, and algebraic geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, Int. Press (2009) 117

[22] K Grove, C Searle, Positively curved manifolds with maximal symmetry rank, J. Pure Appl. Algebra 91 (1994) 137 | DOI

[23] K Grove, C Searle, Differential topological restrictions curvature and symmetry, J. Differential Geom. 47 (1997) 530

[24] K Grove, B Wilking, A knot characterization and 1–connected nonnegatively curved 4–manifolds with circle symmetry,

[25] B A Kleiner, Riemannian four-manifolds with nonnegative curvature and continuous symmetry, PhD thesis, University of California, Berkeley (1990)

[26] D Montgomery, C T Yang, Groups on Sn with principal orbits of dimension n − 3, Illinois J. Math. 4 (1960) 507

[27] P S Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957) 447 | DOI

[28] W D Neumann, 3–dimensional G–manifolds with 2–dimensional orbits, from: "Proc. Conf. Transformation Groups", Springer (1968) 220

[29] P Orlik, Seifert manifolds, 291, Springer (1972)

[30] P Orlik, F Raymond, Actions of SO(2) on 3–manifolds, from: "Proc. Conf. Transformation Groups", Springer (1968) 297

[31] P S Pao, Nonlinear circle actions on the 4–sphere and twisting spun knots, Topology 17 (1978) 291 | DOI

[32] G P Paternain, J Petean, Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151 (2003) 415 | DOI

[33] A V Pavlov, Five-dimensional biquotients of Lie groups, Sibirsk. Mat. Zh. 45 (2004) 1323 | DOI

[34] G Perelman, The entropy formula for the Ricci flow and its geometric applications,

[35] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,

[36] G Perelman, Ricci flow with surgery on three-manifolds,

[37] G Perelman, Alexandrov’s spaces with curvatures bounded from below, II, preprint (1991)

[38] F Raymond, Classification of the actions of the circle on 3–manifolds, Trans. Amer. Math. Soc. 131 (1968) 51 | DOI

[39] X Rong, Positively curved manifolds with almost maximal symmetry rank, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II" (2002) 157 | DOI

[40] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401 | DOI

[41] C Searle, D Yang, On the topology of nonnegatively curved simply connected 4–manifolds with continuous symmetry, Duke Math. J. 74 (1994) 547 | DOI

[42] S Smale, On the structure of 5–manifolds, Ann. of Math. 75 (1962) 38 | DOI

[43] W Spindeler, Fixpunkthomogene S1–Wirkungen auf 5–Mannigfaltigkeiten nichtnegativer Krümmung (2009)

[44] B Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002) 397

[45] B Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2003) 259 | DOI

[46] B Wilking, Nonnegatively and positively curved manifolds, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 25

[47] B Wilking, Group actions on nonnegatively and positively curved manifolds, Lecture notes, Münster (2010)

[48] W Ziller, Examples of Riemannian manifolds with nonnegative sectional curvature, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 63

Cité par Sources :