Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a closed, simply connected, nonnegatively curved –manifold admitting an effective, isometric action is diffeomorphic to one of , or the Wu manifold .
Galaz-Garcia, Fernando 1 ; Searle, Catherine 2
@article{GT_2014_18_3_a4, author = {Galaz-Garcia, Fernando and Searle, Catherine}, title = {Nonnegatively curved 5{\textendash}manifolds with almost maximal symmetry rank}, journal = {Geometry & topology}, pages = {1397--1435}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1397}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/} }
TY - JOUR AU - Galaz-Garcia, Fernando AU - Searle, Catherine TI - Nonnegatively curved 5–manifolds with almost maximal symmetry rank JO - Geometry & topology PY - 2014 SP - 1397 EP - 1435 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/ DO - 10.2140/gt.2014.18.1397 ID - GT_2014_18_3_a4 ER -
%0 Journal Article %A Galaz-Garcia, Fernando %A Searle, Catherine %T Nonnegatively curved 5–manifolds with almost maximal symmetry rank %J Geometry & topology %D 2014 %P 1397-1435 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/ %R 10.2140/gt.2014.18.1397 %F GT_2014_18_3_a4
Galaz-Garcia, Fernando; Searle, Catherine. Nonnegatively curved 5–manifolds with almost maximal symmetry rank. Geometry & topology, Tome 18 (2014) no. 3, pp. 1397-1435. doi : 10.2140/gt.2014.18.1397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1397/
[1] Simply connected 5–manifolds, Ann. of Math. 82 (1965) 365 | DOI
,[2] Introduction to compact transformation groups, 46, Academic Press (1972)
,[3] A course in metric geometry, 33, Amer. Math. Soc. (2001)
, , ,[4] AD Aleksandrov’s spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222 | DOI
, , ,[5] Group actions on Poincaré duality spaces, Bull. Amer. Math. Soc. 78 (1972) 1024 | DOI
, ,[6] Comparison theorems in Riemannian geometry, AMS Chelsea Publishing (2008)
, ,[7] The classification of simply connected biquotients of dimension at most 7 and 3 new examples of almost positively curved manifolds, PhD thesis, University of Pennsylvania (2011)
,[8] Graph theory, 173, Springer (2005)
,[9] Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3–manifolds, Geom. Topol. 13 (2009) 1129 | DOI
, ,[10] Circle bundles over 4–manifolds, Arch. Math. (Basel) 85 (2005) 278 | DOI
, ,[11] Circle actions on simply connected 4–manifolds, Trans. Amer. Math. Soc. 230 (1977) 147 | DOI
,[12] Classification of circle actions on 4–manifolds, Trans. Amer. Math. Soc. 242 (1978) 377 | DOI
,[13] Nonnegatively curved fixed point homogeneous manifolds in low dimensions, Geom. Dedicata 157 (2012) 367 | DOI
,[14] Cohomogeneity–two torus actions on nonnegatively curved manifolds of low dimension, Math. Z. 276 (2014) 133 | DOI
, ,[15] Low-dimensional manifolds with nonnegative curvature and maximal symmetry rank, Proc. Amer. Math. Soc. 139 (2011) 2559 | DOI
, ,[16] Nonnegatively curved fixed point homogeneous 5–manifolds, Ann. Global Anal. Geom. 41 (2012) 253 | DOI
, ,[17] Erratum to : Nonnegatively curved fixed point homogeneous 5–manifolds, Ann. Global Anal. Geom. 45 (2014) 151 | DOI
, ,[18] S2– and P2–category of manifolds, Topology Appl. 159 (2012) 1052 | DOI
, , ,[19] Handbook of graph theory, CRC Press (2004)
, , editors,[20] Geometry of, and via, symmetries, from: "Conformal, Riemannian and Lagrangian geometry", Univ. Lecture Ser. 27, Amer. Math. Soc. (2002) 31
,[21] Developments around positive sectional curvature, from: "Geometry, analysis, and algebraic geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, Int. Press (2009) 117
,[22] Positively curved manifolds with maximal symmetry rank, J. Pure Appl. Algebra 91 (1994) 137 | DOI
, ,[23] Differential topological restrictions curvature and symmetry, J. Differential Geom. 47 (1997) 530
, ,[24] A knot characterization and 1–connected nonnegatively curved 4–manifolds with circle symmetry,
, ,[25] Riemannian four-manifolds with nonnegative curvature and continuous symmetry, PhD thesis, University of California, Berkeley (1990)
,[26] Groups on Sn with principal orbits of dimension n − 3, Illinois J. Math. 4 (1960) 507
, ,[27] On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957) 447 | DOI
,[28] 3–dimensional G–manifolds with 2–dimensional orbits, from: "Proc. Conf. Transformation Groups", Springer (1968) 220
,[29] Seifert manifolds, 291, Springer (1972)
,[30] Actions of SO(2) on 3–manifolds, from: "Proc. Conf. Transformation Groups", Springer (1968) 297
, ,[31] Nonlinear circle actions on the 4–sphere and twisting spun knots, Topology 17 (1978) 291 | DOI
,[32] Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151 (2003) 415 | DOI
, ,[33] Five-dimensional biquotients of Lie groups, Sibirsk. Mat. Zh. 45 (2004) 1323 | DOI
,[34] The entropy formula for the Ricci flow and its geometric applications,
,[35] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,
,[36] Ricci flow with surgery on three-manifolds,
,[37] Alexandrov’s spaces with curvatures bounded from below, II, preprint (1991)
,[38] Classification of the actions of the circle on 3–manifolds, Trans. Amer. Math. Soc. 131 (1968) 51 | DOI
,[39] Positively curved manifolds with almost maximal symmetry rank, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II" (2002) 157 | DOI
,[40] The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401 | DOI
,[41] On the topology of nonnegatively curved simply connected 4–manifolds with continuous symmetry, Duke Math. J. 74 (1994) 547 | DOI
, ,[42] On the structure of 5–manifolds, Ann. of Math. 75 (1962) 38 | DOI
,[43] Fixpunkthomogene S1–Wirkungen auf 5–Mannigfaltigkeiten nichtnegativer Krümmung (2009)
,[44] Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002) 397
,[45] Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2003) 259 | DOI
,[46] Nonnegatively and positively curved manifolds, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 25
,[47] Group actions on nonnegatively and positively curved manifolds, Lecture notes, Münster (2010)
,[48] Examples of Riemannian manifolds with nonnegative sectional curvature, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 63
,Cité par Sources :