Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A smooth affine hypersurface of complex dimension is homotopy equivalent to an –dimensional cell complex. Given a defining polynomial for as well as a regular triangulation of its Newton polytope , we provide a purely combinatorial construction of a compact topological space as a union of components of real dimension , and prove that embeds into as a deformation retract. In particular, is homotopy equivalent to .
Ruddat, Helge 1 ; Sibilla, Nicolò 2 ; Treumann, David 3 ; Zaslow, Eric 4
@article{GT_2014_18_3_a3, author = {Ruddat, Helge and Sibilla, Nicol\`o and Treumann, David and Zaslow, Eric}, title = {Skeleta of affine hypersurfaces}, journal = {Geometry & topology}, pages = {1343--1395}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1343}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/} }
TY - JOUR AU - Ruddat, Helge AU - Sibilla, Nicolò AU - Treumann, David AU - Zaslow, Eric TI - Skeleta of affine hypersurfaces JO - Geometry & topology PY - 2014 SP - 1343 EP - 1395 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/ DO - 10.2140/gt.2014.18.1343 ID - GT_2014_18_3_a3 ER -
%0 Journal Article %A Ruddat, Helge %A Sibilla, Nicolò %A Treumann, David %A Zaslow, Eric %T Skeleta of affine hypersurfaces %J Geometry & topology %D 2014 %P 1343-1395 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/ %R 10.2140/gt.2014.18.1343 %F GT_2014_18_3_a3
Ruddat, Helge; Sibilla, Nicolò; Treumann, David; Zaslow, Eric. Skeleta of affine hypersurfaces. Geometry & topology, Tome 18 (2014) no. 3, pp. 1343-1395. doi : 10.2140/gt.2014.18.1343. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/
[1] Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006) 1097 | DOI
,[2] Symplectic perspectives on tropical geometry (2009)
,[3] Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces,
, , ,[4] The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (1959) 713 | DOI
, ,[5] Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993) 349 | DOI
,[6] Smooth p–adic analytic spaces are locally contractible, II, from: "Geometric aspects of Dwork theory, Vol. I, II" (editors A Adolphson, F Baldassarri, P Berthelot, N Katz, F Loeser), de Gruyter (2004) 293
,[7] Shellable decompositions of cells and spheres, Math. Scand. 29 (1971) 197
, ,[8] Symplectic geometry of Stein manifolds, in preparation
, ,[9] Newton polyhedra and an algorithm for calculating Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 925
, ,[10] Hodge cycles on abelian varieties, from: "Hodge cycles, motives, and Shimura varieties", Lecture Notes in Math. 900 (1982) 9
,[11] The coherent–constructible correspondence for toric Deligne–Mumford stacks,
, , , ,[12] A categorification of Morelli’s theorem, Invent. Math. 186 (2011) 79 | DOI
, , , ,[13] Covering spaces with singularities, from: "A symposium in honor of S Lefschetz", Princeton Univ. Press (1957) 243
,[14] Introduction to toric varieties, 131, Princeton Univ. Press (1993)
,[15] Discriminants, resultants, and multidimensional determinants, Birkhäuser (1994) | DOI
, , ,[16] Towards mirror symmetry for varieties of general type,
, , ,[17] From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI
, ,[18] Algebraic topology, Cambridge Univ. Press (2002)
,[19] Log smooth deformation theory, Tohoku Math. J. 48 (1996) 317 | DOI
,[20] Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191
,[21] Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999) 161 | DOI
, ,[22] Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI
, ,[23] Combinatorial algebraic topology, 21, Springer, Berlin (2008) | DOI
,[24] A general small cancellation theory, Internat. J. Algebra Comput. 10 (2000) 1 | DOI
,[25] Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004) 1035 | DOI
,[26] Relative rounding in toric and logarithmic geometry, Geom. Topol. 14 (2010) 2189 | DOI
, ,[27] Log Hodge groups on a toric Calabi–Yau degeneration, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 113 | DOI
,[28] Ribbon graphs and mirror symmetry, I,
, , ,[29] Polytopes and skeleta,
, ,[30] The fundamental category of a stratified space, J. Homotopy Relat. Struct. 4 (2009) 359
,Cité par Sources :