Skeleta of affine hypersurfaces
Geometry & topology, Tome 18 (2014) no. 3, pp. 1343-1395.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n–dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation T of its Newton polytope , we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.

DOI : 10.2140/gt.2014.18.1343
Classification : 14J70, 14R99
Keywords: skeleton, retraction, hypersurface, homotopy equivalence, affine, toric degeneration, Kato–Nakayama space, log geometry, Newton polytope, triangulation

Ruddat, Helge 1 ; Sibilla, Nicolò 2 ; Treumann, David 3 ; Zaslow, Eric 4

1 Mathematisches Institut, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz, Germany
2 Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany
3 Department of Mathematics, Boston College, Carney Hall, Room 301, Chestnut Hill, Boston, MA 02467-3806, USA
4 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730, USA
@article{GT_2014_18_3_a3,
     author = {Ruddat, Helge and Sibilla, Nicol\`o and Treumann, David and Zaslow, Eric},
     title = {Skeleta of affine hypersurfaces},
     journal = {Geometry & topology},
     pages = {1343--1395},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1343},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/}
}
TY  - JOUR
AU  - Ruddat, Helge
AU  - Sibilla, Nicolò
AU  - Treumann, David
AU  - Zaslow, Eric
TI  - Skeleta of affine hypersurfaces
JO  - Geometry & topology
PY  - 2014
SP  - 1343
EP  - 1395
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/
DO  - 10.2140/gt.2014.18.1343
ID  - GT_2014_18_3_a3
ER  - 
%0 Journal Article
%A Ruddat, Helge
%A Sibilla, Nicolò
%A Treumann, David
%A Zaslow, Eric
%T Skeleta of affine hypersurfaces
%J Geometry & topology
%D 2014
%P 1343-1395
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/
%R 10.2140/gt.2014.18.1343
%F GT_2014_18_3_a3
Ruddat, Helge; Sibilla, Nicolò; Treumann, David; Zaslow, Eric. Skeleta of affine hypersurfaces. Geometry & topology, Tome 18 (2014) no. 3, pp. 1343-1395. doi : 10.2140/gt.2014.18.1343. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1343/

[1] M Abouzaid, Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006) 1097 | DOI

[2] M Abouzaid, Symplectic perspectives on tropical geometry (2009)

[3] M Abouzaid, D Auroux, L Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces,

[4] A Andreotti, T Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (1959) 713 | DOI

[5] V V Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993) 349 | DOI

[6] V G Berkovich, Smooth p–adic analytic spaces are locally contractible, II, from: "Geometric aspects of Dwork theory, Vol. I, II" (editors A Adolphson, F Baldassarri, P Berthelot, N Katz, F Loeser), de Gruyter (2004) 293

[7] H Bruggesser, P Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971) 197

[8] K Cieliebak, Y Eliashberg, Symplectic geometry of Stein manifolds, in preparation

[9] V I Danilov, A G Khovanskiǐ, Newton polyhedra and an algorithm for calculating Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 925

[10] P Deligne, Hodge cycles on abelian varieties, from: "Hodge cycles, motives, and Shimura varieties", Lecture Notes in Math. 900 (1982) 9

[11] B Fang, C C M Liu, D Treumann, E Zaslow, The coherent–constructible correspondence for toric Deligne–Mumford stacks,

[12] B Fang, C C M Liu, D Treumann, E Zaslow, A categorification of Morelli’s theorem, Invent. Math. 186 (2011) 79 | DOI

[13] R H Fox, Covering spaces with singularities, from: "A symposium in honor of S Lefschetz", Princeton Univ. Press (1957) 243

[14] W Fulton, Introduction to toric varieties, 131, Princeton Univ. Press (1993)

[15] I M Gelfand, M M Kapranov, A V Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser (1994) | DOI

[16] M Gross, L Katzarkov, H Ruddat, Towards mirror symmetry for varieties of general type,

[17] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[18] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[19] F Kato, Log smooth deformation theory, Tohoku Math. J. 48 (1996) 317 | DOI

[20] K Kato, Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191

[21] K Kato, C Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999) 161 | DOI

[22] M Kontsevich, Y Soibelman, Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI

[23] D Kozlov, Combinatorial algebraic topology, 21, Springer, Berlin (2008) | DOI

[24] J P Mccammond, A general small cancellation theory, Internat. J. Algebra Comput. 10 (2000) 1 | DOI

[25] G Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004) 1035 | DOI

[26] C Nakayama, A Ogus, Relative rounding in toric and logarithmic geometry, Geom. Topol. 14 (2010) 2189 | DOI

[27] H Ruddat, Log Hodge groups on a toric Calabi–Yau degeneration, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 113 | DOI

[28] N Sibilla, D Treumann, E Zaslow, Ribbon graphs and mirror symmetry, I,

[29] D Treumann, E Zaslow, Polytopes and skeleta,

[30] J Woolf, The fundamental category of a stratified space, J. Homotopy Relat. Struct. 4 (2009) 359

Cité par Sources :