K–theory, LQEL manifolds and Severi varieties
Geometry & topology, Tome 18 (2014) no. 3, pp. 1245-1260.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use topological K–theory to study nonsingular varieties with quadratic entry locus. We thus obtain a new proof of Russo’s divisibility property for locally quadratic entry locus manifolds. In particular we obtain a K–theoretic proof of Zak’s theorem that the dimension of a Severi variety must be 2, 4, 8 or 16 and so answer a question of Atiyah and Berndt. We also show how the same methods applied to dual varieties recover the Landman parity theorem.

DOI : 10.2140/gt.2014.18.1245
Classification : 14M22, 19L64
Keywords: $K$–theory, secant variety, Severi variety, quadric, dual variety

Nash, Oliver 1

1 Dublin, Ireland
@article{GT_2014_18_3_a0,
     author = {Nash, Oliver},
     title = {K{\textendash}theory, {LQEL} manifolds and {Severi} varieties},
     journal = {Geometry & topology},
     pages = {1245--1260},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2014},
     doi = {10.2140/gt.2014.18.1245},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/}
}
TY  - JOUR
AU  - Nash, Oliver
TI  - K–theory, LQEL manifolds and Severi varieties
JO  - Geometry & topology
PY  - 2014
SP  - 1245
EP  - 1260
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/
DO  - 10.2140/gt.2014.18.1245
ID  - GT_2014_18_3_a0
ER  - 
%0 Journal Article
%A Nash, Oliver
%T K–theory, LQEL manifolds and Severi varieties
%J Geometry & topology
%D 2014
%P 1245-1260
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/
%R 10.2140/gt.2014.18.1245
%F GT_2014_18_3_a0
Nash, Oliver. K–theory, LQEL manifolds and Severi varieties. Geometry & topology, Tome 18 (2014) no. 3, pp. 1245-1260. doi : 10.2140/gt.2014.18.1245. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/

[1] M F Atiyah, K–theory, W. A. Benjamin (1967)

[2] M F Atiyah, J Berndt, Projective planes, Severi varieties and spheres, from: "Surveys in differential geometry, Vol. VIII" (editor S T Yau), International Press (2003) 1

[3] M F Atiyah, F Hirzebruch, Vector bundles and homogeneous spaces, from: "Proc. Sympos. Pure Math., Vol. III", Amer. Math. Soc. (1961) 7

[4] P E Chaput, Severi varieties, Math. Z. 240 (2002) 451 | DOI

[5] L Ein, Varieties with small dual varieties, I, Invent. Math. 86 (1986) 63 | DOI

[6] T Fujita, J Roberts, Varieties with small secant varieties: The extremal case, Amer. J. Math. 103 (1981) 953 | DOI

[7] R Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974) 1017 | DOI

[8] R Hartshorne, Algebraic geometry, 52, Springer (1977)

[9] L H Hodgkin, V P Snaith, Topics in K–theory, 496, Springer (1975)

[10] D Husemoller, Fibre bundles, 20, Springer (1994)

[11] P Ionescu, F Russo, On dual defective manifolds,

[12] P Ionescu, F Russo, Manifolds covered by lines and the Hartshorne conjecture for quadratic manifolds, Amer. J. Math. 135 (2013) 349 | DOI

[13] J M Landsberg, On degenerate secant and tangential varieties and local differential geometry, Duke Math. J. 85 (1996) 605 | DOI

[14] R Lazarsfeld, A Van De Ven, Topics in the geometry of projective space, 4, Birkhäuser (1984) 52 | DOI

[15] F Russo, Tangents and secants of algebraic varieties: Notes of a course, 24, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (2003)

[16] F Russo, Varieties with quadratic entry locus, I, Math. Ann. 344 (2009) 597 | DOI

[17] P Sankaran, P Zvengrowski, K–theory of oriented Grassmann manifolds, Math. Slovaca 47 (1997) 319

[18] J Schillewaert, H Van Maldeghem, Severi varieties over arbitrary fields,

[19] H Tango, Remark on varieties with small secant varieties, Bull. Kyoto Univ. Ed. Ser. B (1982) 1

[20] E A Tevelev, Projective duality and homogeneous spaces, 133, Springer (2005)

[21] F L Zak, Tangents and secants of algebraic varieties, 127, Amer. Math. Soc. (1993)

Cité par Sources :