Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use topological –theory to study nonsingular varieties with quadratic entry locus. We thus obtain a new proof of Russo’s divisibility property for locally quadratic entry locus manifolds. In particular we obtain a –theoretic proof of Zak’s theorem that the dimension of a Severi variety must be , , or and so answer a question of Atiyah and Berndt. We also show how the same methods applied to dual varieties recover the Landman parity theorem.
Nash, Oliver 1
@article{GT_2014_18_3_a0, author = {Nash, Oliver}, title = {K{\textendash}theory, {LQEL} manifolds and {Severi} varieties}, journal = {Geometry & topology}, pages = {1245--1260}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2014}, doi = {10.2140/gt.2014.18.1245}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/} }
Nash, Oliver. K–theory, LQEL manifolds and Severi varieties. Geometry & topology, Tome 18 (2014) no. 3, pp. 1245-1260. doi : 10.2140/gt.2014.18.1245. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1245/
[1] K–theory, W. A. Benjamin (1967)
,[2] Projective planes, Severi varieties and spheres, from: "Surveys in differential geometry, Vol. VIII" (editor S T Yau), International Press (2003) 1
, ,[3] Vector bundles and homogeneous spaces, from: "Proc. Sympos. Pure Math., Vol. III", Amer. Math. Soc. (1961) 7
, ,[4] Severi varieties, Math. Z. 240 (2002) 451 | DOI
,[5] Varieties with small dual varieties, I, Invent. Math. 86 (1986) 63 | DOI
,[6] Varieties with small secant varieties: The extremal case, Amer. J. Math. 103 (1981) 953 | DOI
, ,[7] Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974) 1017 | DOI
,[8] Algebraic geometry, 52, Springer (1977)
,[9] Topics in K–theory, 496, Springer (1975)
, ,[10] Fibre bundles, 20, Springer (1994)
,[11] On dual defective manifolds,
, ,[12] Manifolds covered by lines and the Hartshorne conjecture for quadratic manifolds, Amer. J. Math. 135 (2013) 349 | DOI
, ,[13] On degenerate secant and tangential varieties and local differential geometry, Duke Math. J. 85 (1996) 605 | DOI
,[14] Topics in the geometry of projective space, 4, Birkhäuser (1984) 52 | DOI
, ,[15] Tangents and secants of algebraic varieties: Notes of a course, 24, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (2003)
,[16] Varieties with quadratic entry locus, I, Math. Ann. 344 (2009) 597 | DOI
,[17] K–theory of oriented Grassmann manifolds, Math. Slovaca 47 (1997) 319
, ,[18] Severi varieties over arbitrary fields,
, ,[19] Remark on varieties with small secant varieties, Bull. Kyoto Univ. Ed. Ser. B (1982) 1
,[20] Projective duality and homogeneous spaces, 133, Springer (2005)
,[21] Tangents and secants of algebraic varieties, 127, Amer. Math. Soc. (1993)
,Cité par Sources :