The period-index problem for twisted topological K–theory
Geometry & topology, Tome 18 (2014) no. 2, pp. 1115-1148.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce and solve a period-index problem for the Brauer group of a topological space. The period-index problem is to relate the order of a class in the Brauer group to the degrees of Azumaya algebras representing it. For any space of dimension d, we give upper bounds on the index depending only on d and the order of the class. By the Oka principle, this also solves the period-index problem for the analytic Brauer group of any Stein space that has the homotopy type of a finite CW–complex. Our methods use twisted topological K–theory, which was first introduced by Donovan and Karoubi. We also study the cohomology of the projective unitary groups to give cohomological obstructions to a class being represented by an Azumaya algebra of degree n. Applying this to the finite skeleta of the Eilenberg–Mac Lane space K(,2), where is a prime, we construct a sequence of spaces with an order class in the Brauer group, but whose indices tend to infinity.

DOI : 10.2140/gt.2014.18.1115
Classification : 16K50, 19L50, 55S35
Keywords: Brauer groups, twisted $K\!$–theory, twisted sheaves, stable homotopy theory, cohomology of projective unitary groups

Antieau, Benjamin 1 ; Williams, Ben 2

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA
2 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
@article{GT_2014_18_2_a12,
     author = {Antieau, Benjamin and Williams, Ben},
     title = {The period-index problem for twisted topological {K{\textendash}theory}},
     journal = {Geometry & topology},
     pages = {1115--1148},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.1115},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1115/}
}
TY  - JOUR
AU  - Antieau, Benjamin
AU  - Williams, Ben
TI  - The period-index problem for twisted topological K–theory
JO  - Geometry & topology
PY  - 2014
SP  - 1115
EP  - 1148
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1115/
DO  - 10.2140/gt.2014.18.1115
ID  - GT_2014_18_2_a12
ER  - 
%0 Journal Article
%A Antieau, Benjamin
%A Williams, Ben
%T The period-index problem for twisted topological K–theory
%J Geometry & topology
%D 2014
%P 1115-1148
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1115/
%R 10.2140/gt.2014.18.1115
%F GT_2014_18_2_a12
Antieau, Benjamin; Williams, Ben. The period-index problem for twisted topological K–theory. Geometry & topology, Tome 18 (2014) no. 2, pp. 1115-1148. doi : 10.2140/gt.2014.18.1115. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1115/

[1] M Ando, A J Blumberg, D Gepner, Twists of $K$–theory and TMF, from: "Superstrings, geometry, topology, and $C^\ast$–algebras" (editors R S Doran, G Friedman, J Rosenberg), Proc. Sympos. Pure Math. 81, Amer. Math. Soc. (2010) 27

[2] M Ando, A J Blumberg, D Gepner, M Hopkins, C Rezk, Units of ring spectra and Thom spectra, to appear in J. Top.

[3] B Antieau, Cohomological obstruction theory for Brauer classes and the period-index problem, J. $K\!$–Theory 8 (2011) 419

[4] B Antieau, Čech approximation to the Brown–Gersten spectral sequence, Homology Homotopy Appl. 13 (2011) 319

[5] B Antieau, B Williams, The topological period–index problem over $6$–complexes, to appear in J. Top. Online First

[6] B Antieau, B Williams, Godeaux–Serre varieties and the étale index, J. $K\!$–Theory 11 (2013) 283

[7] M Artin, Brauer–Severi varieties, from: "Brauer groups in ring theory and algebraic geometry" (editor A H M J Verschoren), Lecture Notes in Math. 917, Springer (1982) 194

[8] M Artin, D Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 25 (1972) 75

[9] M Atiyah, G Segal, Twisted $K\!$–theory, Ukr. Mat. Vis. 1 (2004) 287

[10] M Atiyah, G Segal, Twisted $K\!$–theory and cohomology, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. Publ. (2006) 5

[11] P F Baum, W Browder, The cohomology of quotients of classical groups, Topology 3 (1965) 305

[12] K J Becher, D W Hoffmann, Symbol lengths in Milnor $K\!$–theory, Homology Homotopy Appl. 6 (2004) 17

[13] V G Berkovič, The Brauer group of abelian varieties, Funkcional Anal. i Priložen. 6 (1972) 10

[14] J L Colliot-Thélène, Die Brauersche Gruppe; ihre Verallgemeinerungen und Anwendungen in der Arithmetischen Geometrie (2001)

[15] J L Colliot-Thélène, Exposant et indice d'algèbres simples centrales non ramifiées, Enseign. Math. 48 (2002) 127

[16] A H Căldăraru, Derived categories of twisted sheaves on Calabi–Yau manifolds, PhD thesis, Cornell University (2000)

[17] P Donovan, M Karoubi, Graded Brauer groups and $K\!$–theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) 5

[18] D Dugger, S Hollander, D C Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004) 9

[19] D Dugger, D C Isaksen, Topological hypercovers and $\mathbb A^1$–realizations, Math. Z. 246 (2004) 667

[20] D Edidin, B Hassett, A Kresch, A Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001) 761

[21] G Elencwajg, M S Narasimhan, Projective bundles on a complex torus, J. Reine Angew. Math. 340 (1983) 1

[22] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc. (1997)

[23] H Grauert, R Remmert, Theory of Stein spaces, Grundl. Math. Wissen. 236, Springer (1979)

[24] A Grothendieck, Le groupe de Brauer, I: Algèbres d'Azumaya et interprétations diverses, from: "Dix exposés sur la cohomologie des schémas", North-Holland (1968) 46

[25] A Grothendieck, Le groupe de Brauer, II: Théorie cohomologique, from: "Dix exposés sur la cohomologie des schémas", North-Holland (1968) 67

[26] R T Hoobler, Brauer groups of abelian schemes, Ann. Sci. École Norm. Sup. 5 (1972) 45

[27] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[28] D Huybrechts, S Schröer, The Brauer group of analytic $K3$ surfaces, Int. Math. Res. Not. 2003 (2003) 2687

[29] B Iversen, Brauer group of a linear algebraic group, J. Algebra 42 (1976) 295

[30] J F Jardine, Presheaves of symmetric spectra, J. Pure Appl. Algebra 150 (2000) 137

[31] A J De Jong, A result of Gabber, preprint

[32] A J De Jong, The period–index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004) 71

[33] D S Kahn, S B Priddy, On the transfer in the homology of symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978) 91

[34] D S Kahn, S B Priddy, The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83 (1978) 103

[35] M Karoubi, Twisted bundles and twisted $K\!$–theory, from: "Topics in noncommutative geometry" (editor G Cortiñas), Clay Math. Proc. 16, Amer. Math. Soc. (2012) 223

[36] E E Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852) 93

[37] M Lieblich, The period-index problem for fields of transcendence degree $2$,

[38] M Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008) 1

[39] M Lieblich, Period and index in the Brauer group of an arithmetic surface, J. Reine Angew. Math. 659 (2011) 1

[40] J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ. Press (2009)

[41] J Lurie, Derived algebraic geometry VII: Spectral schemes (2011)

[42] J Lurie, Higher algebra (2011)

[43] R E Mosher, M C Tangora, Cohomology operations and applications in homotopy theory, Harper Row (1968)

[44] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)

[45] J Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989) 368

[46] D J Saltman, Division algebras over $p$–adic curves, J. Ramanujan Math. Soc. 12 (1997) 25

[47] S Schröer, Topological methods for complex-analytic Brauer groups, Topology 44 (2005) 875

[48] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

[49] J P Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258

[50] R G Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962) 264

[51] R M Switzer, Algebraic topology—homotopy and homology, Springer (1975)

[52] R W Thomason, First quadrant spectral sequences in algebraic $K\!$–theory via homotopy colimits, Comm. Algebra 10 (1982) 1589

[53] C A Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge Univ. Press (1994)

Cité par Sources :