Commutative ring objects in pro-categories and generalized Moore spectra
Geometry & topology, Tome 18 (2014) no. 1, pp. 103-140.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a rigidity criterion to show that in simplicial model categories with a compatible symmetric monoidal structure, operad structures can be automatically lifted along certain maps. This is applied to obtain an unpublished result of M J Hopkins that certain towers of generalized Moore spectra, closely related to the K(n)–local sphere, are E–algebras in the category of pro-spectra. In addition, we show that Adams resolutions automatically satisfy the above rigidity criterion. In order to carry this out we develop the concept of an operadic model category, whose objects have homotopically tractable endomorphism operads.

DOI : 10.2140/gt.2014.18.103
Classification : 55P43, 55U35, 18D20, 18D50, 18G55
Keywords: Moore spectra, pro-objects, structured ring spectra, endomorphism operad

Davis, Daniel G 1 ; Lawson, Tyler 2

1 Department of Mathematics, University of Louisiana at Lafayette, 1403 Johnston Street, Maxim Doucet Hall, Room 217, Lafayette, LA 70504-1010, USA
2 Department of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455, USA
@article{GT_2014_18_1_a3,
     author = {Davis, Daniel G and Lawson, Tyler},
     title = {Commutative ring objects in pro-categories and generalized {Moore} spectra},
     journal = {Geometry & topology},
     pages = {103--140},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.103},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.103/}
}
TY  - JOUR
AU  - Davis, Daniel G
AU  - Lawson, Tyler
TI  - Commutative ring objects in pro-categories and generalized Moore spectra
JO  - Geometry & topology
PY  - 2014
SP  - 103
EP  - 140
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.103/
DO  - 10.2140/gt.2014.18.103
ID  - GT_2014_18_1_a3
ER  - 
%0 Journal Article
%A Davis, Daniel G
%A Lawson, Tyler
%T Commutative ring objects in pro-categories and generalized Moore spectra
%J Geometry & topology
%D 2014
%P 103-140
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.103/
%R 10.2140/gt.2014.18.103
%F GT_2014_18_1_a3
Davis, Daniel G; Lawson, Tyler. Commutative ring objects in pro-categories and generalized Moore spectra. Geometry & topology, Tome 18 (2014) no. 1, pp. 103-140. doi : 10.2140/gt.2014.18.103. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.103/

[1] V Angeltveit, Enriched Reedy categories, Proc. Amer. Math. Soc. 136 (2008) 2323

[2] M Artin, B Mazur, Etale homotopy, Lecture Notes in Mathematics 100, Springer (1969)

[3] C Ausoni, J Rognes, Algebraic $K$–theory of the fraction field of topological $K$–theory, unpublished (2008)

[4] A Baker, A Lazarev, On the Adams spectral sequence for $R$–modules, Algebr. Geom. Topol. 1 (2001) 173

[5] T Bauer, Formal plethories

[6] M Behrens, The tower of generalized Moore spectra is $H_\infty$, unpublished (2004)

[7] M Behrens, D G Davis, The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010) 4983

[8] C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805

[9] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257

[10] G Carlsson, Derived completions in stable homotopy theory, J. Pure Appl. Algebra 212 (2008) 550

[11] B I Dundas, Localization of $V$–categories, Theory Appl. Categ. 8 (2001) 284

[12] W Dwyer, K Hess, Long knots and maps between operads, Geom. Topol. 16 (2012) 919

[13] W G Dwyer, P S Hirschhorn, D M Kan, J H Smith, Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs 113, Amer. Math. Soc. (2004)

[14] W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267

[15] D A Edwards, H M Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics 542, Springer (1976)

[16] H Fausk, Equivariant homotopy theory for pro-spectra, Geom. Topol. 12 (2008) 103

[17] H Fausk, D C Isaksen, Model structures on pro-categories, Homology Homotopy Appl. 9 (2007) 367

[18] H Fausk, D C Isaksen, t–model structures, Homology Homotopy Appl. 9 (2007) 399

[19] P G Goerss, (Pre-)sheaves of ring spectra over the moduli stack of formal group laws, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer Acad. Publ. (2004) 101

[20] P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the $K(2)$–local sphere at the prime $3$, Ann. of Math. 162 (2005) 777

[21] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151

[22] M Hovey, Bousfield localization functors and Hopkins' chromatic splitting conjecture, from: "The Čech centennial 1993" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 225

[23] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math. Soc. (1999)

[24] M Hovey, Morava $E$–theory of filtered colimits, Trans. Amer. Math. Soc. 360 (2008) 369

[25] M Hovey, J H Palmieri, N P Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997) 114

[26] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[27] M Hovey, N P Strickland, Morava $K$–theories and localisation, Mem. Amer. Math. Soc. 139 (1999)

[28] D C Isaksen, Strict model structures for pro-categories, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 179

[29] M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, Amer. Math. Soc. (2002)

[30] S Oka, Ring spectra with few cells, Japan. J. Math. 5 (1979) 81

[31] C W Rezk, Spaces of algebra structures and cohomology of operads, PhD thesis, Massachusetts Institute of Technology (1996)

[32] C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors Mahowald,Mark, Priddy,Stewart), Contemp. Math. 220, Amer. Math. Soc. (1998) 313

[33] C Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topology Appl. 119 (2002) 65

[34] C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969

[35] J Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008) 137

[36] S Schwede, Stable homotopical algebra and $\Gamma$–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 329

[37] S Schwede, The stable homotopy category is rigid, Ann. of Math. 166 (2007) 837

[38] S Schwede, An untitled book project about symmetric spectra (2007)

[39] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491

[40] S Schwede, B Shipley, Equivalences of monoidal model categories, Algebr. Geom. Topol. 3 (2003) 287

[41] B Shipley, A convenient model category for commutative ring spectra, from: "Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$–theory" (editors P Goerss, S Priddy), Contemp. Math. 346, Amer. Math. Soc. (2004) 473

[42] R W Thomason, Algebraic $K$–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437

Cité par Sources :