Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We provide examples of contact manifolds of any odd dimension greater than or equal to which are not diffeomorphic but have exact symplectomorphic symplectizations.
Courte, Sylvain 1
@article{GT_2014_18_1_a0, author = {Courte, Sylvain}, title = {Contact manifolds with symplectomorphic symplectizations}, journal = {Geometry & topology}, pages = {1--15}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, doi = {10.2140/gt.2014.18.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1/} }
Courte, Sylvain. Contact manifolds with symplectomorphic symplectizations. Geometry & topology, Tome 18 (2014) no. 1, pp. 1-15. doi : 10.2140/gt.2014.18.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1/
[1] Smooth $s$–cobordisms of elliptic $3$–manifolds, J. Differential Geom. 73 (2006) 413
,[2] From Stein to Weinstein and back: Symplectic geometry of affine complex manifolds, Amer. Math. Soc. Colloq. Pub. 59, Amer. Math. Soc. (2012)
, ,[3] A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973)
,[4] Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry" (editors J Hurtubise, F Lalonde, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49
,[5] Introduction to symplectic field theory, from: "Visions in Mathematics: GAFA 2000, Part II", Geom. Funct. Anal. special volume, Birkhäuser (2000) 560
, , ,[6] Stability theorems for “concordance implies isotopy” and “$h$–cobordism implies diffeomorphism”, Duke Math. J. 43 (1976) 555
, ,[7] Le théorème de Barden–Mazur–Stallings, Comment. Math. Helv. 40 (1965) 31
,[8] Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961) 575
,[9] Lectures on the $h$–cobordism theorem, Princeton Univ. Press (1965)
,[10] Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358
,[11] Loose legendrian embeddings in high dimensional contact manifolds
,[12] Algebraic and geometric surgery, Oxford University Press (2002)
,[13] On the structure of manifolds, Amer. J. Math. 84 (1962) 387
,Cité par Sources :