Knot contact homology
Geometry & topology, Tome 17 (2013) no. 2, pp. 975-1112.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The conormal lift of a link K in 3 is a Legendrian submanifold ΛK in the unit cotangent bundle U3 of 3 with contact structure equal to the kernel of the Liouville form. Knot contact homology, a topological link invariant of K, is defined as the Legendrian homology of ΛK, the homology of a differential graded algebra generated by Reeb chords whose differential counts holomorphic disks in the symplectization × U3 with Lagrangian boundary condition × ΛK.

We perform an explicit and complete computation of the Legendrian homology of ΛK for arbitrary links K in terms of a braid presentation of K, confirming a conjecture that this invariant agrees with a previously defined combinatorial version of knot contact homology. The computation uses a double degeneration: the braid degenerates toward a multiple cover of the unknot, which in turn degenerates to a point. Under the first degeneration, holomorphic disks converge to gradient flow trees with quantum corrections. The combined degenerations give rise to a new generalization of flow trees called multiscale flow trees. The theory of multiscale flow trees is the key tool in our computation and is already proving to be useful for other computations as well.

DOI : 10.2140/gt.2013.17.975
Classification : 53D42, 57R17, 57M27
Keywords: contact homology, holomorphic curves, knot invariants, Legendrian submanifolds

Ekholm, Tobias 1 ; Etnyre, John B 2 ; Ng, Lenhard 3 ; Sullivan, Michael G 4

1 Department of Mathematics, Uppsala Unversity, Box 480, 751 06 Uppsala, Sweden
2 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta GA 30332-0160, USA
3 Department of Mathematics, Duke University, Box 90320, Durham NC 27708-0320, USA
4 Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-9305, USA
@article{GT_2013_17_2_a6,
     author = {Ekholm, Tobias and Etnyre, John B and Ng, Lenhard and Sullivan, Michael G},
     title = {Knot contact homology},
     journal = {Geometry & topology},
     pages = {975--1112},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.975},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/}
}
TY  - JOUR
AU  - Ekholm, Tobias
AU  - Etnyre, John B
AU  - Ng, Lenhard
AU  - Sullivan, Michael G
TI  - Knot contact homology
JO  - Geometry & topology
PY  - 2013
SP  - 975
EP  - 1112
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/
DO  - 10.2140/gt.2013.17.975
ID  - GT_2013_17_2_a6
ER  - 
%0 Journal Article
%A Ekholm, Tobias
%A Etnyre, John B
%A Ng, Lenhard
%A Sullivan, Michael G
%T Knot contact homology
%J Geometry & topology
%D 2013
%P 975-1112
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/
%R 10.2140/gt.2013.17.975
%F GT_2013_17_2_a6
Ekholm, Tobias; Etnyre, John B; Ng, Lenhard; Sullivan, Michael G. Knot contact homology. Geometry & topology, Tome 17 (2013) no. 2, pp. 975-1112. doi : 10.2140/gt.2013.17.975. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/

[1] M Abouzaid, Maslov $0$ nearby Lagrangians are homotopy equivalent

[2] M Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. 175 (2012) 71

[3] V I Arnold, A B Givental, Symplectic geometry, from: "Dynamical systems, IV" (editors V I Arnold, S P Novikov), Encyclopaedia Math. Sci. 4, Springer (2001) 1

[4] V I Arnold, S M Gusein-Zade, A N Varchenko, Singularities of differentiable maps, I: classification of critical points, caustics and wave fronts, Modern Birkhäuser Classics, Birkhäuser/Springer (2012)

[5] F Bourgeois, T Ekholm, Y Eliashberg, Symplectic homology product via Legendrian surgery, Proc. Natl. Acad. Sci. USA 108 (2011) 8114

[6] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301

[7] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[8] G Dimitroglou Rizell, Knotted Legendrian surfaces with few Reeb chords, Algebr. Geom. Topol. 11 (2011) 2903

[9] N M Dunfield, S Garoufalidis, Non-triviality of the $A$-polynomial for knots in $S^3$, Algebr. Geom. Topol. 4 (2004) 1145

[10] T Ekholm, Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol. 11 (2007) 1083

[11] T Ekholm, J B Etnyre, Invariants of knots, embeddings and immersions via contact geometry, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 77

[12] T Ekholm, J Etnyre, L Ng, M Sullivan, Filtrations on the knot contact homology of transverse knots, Math. Ann. 355 (2013) 1561

[13] T Ekholm, J B Etnyre, J M Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1

[14] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177

[15] T Ekholm, J Etnyre, M Sullivan, Non-isotopic Legendrian submanifolds in $\mathbb R^{2n+1}$, J. Differential Geom. 71 (2005) 85

[16] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453

[17] T Ekholm, J Etnyre, M Sullivan, Legendrian contact homology in $P\times\mathbb R$, Trans. Amer. Math. Soc. 359 (2007) 3301

[18] T Ekholm, T Kálmán, Isotopies of Legendrian 1-knots and Legendrian 2-tori, J. Symplectic Geom. 6 (2008) 407

[19] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (1998) 327

[20] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction, II, AMS/IP Studies in Advanced Mathematics 46, Amer. Math. Soc. (2009)

[21] K Fukaya, P Seidel, I Smith, Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1

[22] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU$(2)$, Math. Res. Lett. 11 (2004) 741

[23] K Mishachev, The $N$-copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659

[24] D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563

[25] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55

[26] L Ng, Knot and braid invariants from contact homology, I, Geom. Topol. 9 (2005) 247

[27] L Ng, Knot and braid invariants from contact homology. II, Geom. Topol. 9 (2005) 1603

[28] L Ng, Conormal bundles, contact homology and knot invariants, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8 (2006) 129

[29] L Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365

[30] L Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189

[31] J W Robbin, D A Salamon, Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 573

[32] J C Sikorav, Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 165

Cité par Sources :