Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The conormal lift of a link in is a Legendrian submanifold in the unit cotangent bundle of with contact structure equal to the kernel of the Liouville form. Knot contact homology, a topological link invariant of , is defined as the Legendrian homology of , the homology of a differential graded algebra generated by Reeb chords whose differential counts holomorphic disks in the symplectization with Lagrangian boundary condition .
We perform an explicit and complete computation of the Legendrian homology of for arbitrary links in terms of a braid presentation of , confirming a conjecture that this invariant agrees with a previously defined combinatorial version of knot contact homology. The computation uses a double degeneration: the braid degenerates toward a multiple cover of the unknot, which in turn degenerates to a point. Under the first degeneration, holomorphic disks converge to gradient flow trees with quantum corrections. The combined degenerations give rise to a new generalization of flow trees called multiscale flow trees. The theory of multiscale flow trees is the key tool in our computation and is already proving to be useful for other computations as well.
Ekholm, Tobias 1 ; Etnyre, John B 2 ; Ng, Lenhard 3 ; Sullivan, Michael G 4
@article{GT_2013_17_2_a6, author = {Ekholm, Tobias and Etnyre, John B and Ng, Lenhard and Sullivan, Michael G}, title = {Knot contact homology}, journal = {Geometry & topology}, pages = {975--1112}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.975}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/} }
TY - JOUR AU - Ekholm, Tobias AU - Etnyre, John B AU - Ng, Lenhard AU - Sullivan, Michael G TI - Knot contact homology JO - Geometry & topology PY - 2013 SP - 975 EP - 1112 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/ DO - 10.2140/gt.2013.17.975 ID - GT_2013_17_2_a6 ER -
Ekholm, Tobias; Etnyre, John B; Ng, Lenhard; Sullivan, Michael G. Knot contact homology. Geometry & topology, Tome 17 (2013) no. 2, pp. 975-1112. doi : 10.2140/gt.2013.17.975. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.975/
[1] Maslov $0$ nearby Lagrangians are homotopy equivalent
,[2] Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. 175 (2012) 71
,[3] Symplectic geometry, from: "Dynamical systems, IV" (editors V I Arnold, S P Novikov), Encyclopaedia Math. Sci. 4, Springer (2001) 1
, ,[4] Singularities of differentiable maps, I: classification of critical points, caustics and wave fronts, Modern Birkhäuser Classics, Birkhäuser/Springer (2012)
, , ,[5] Symplectic homology product via Legendrian surgery, Proc. Natl. Acad. Sci. USA 108 (2011) 8114
, , ,[6] Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301
, , ,[7] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[8] Knotted Legendrian surfaces with few Reeb chords, Algebr. Geom. Topol. 11 (2011) 2903
,[9] Non-triviality of the $A$-polynomial for knots in $S^3$, Algebr. Geom. Topol. 4 (2004) 1145
, ,[10] Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol. 11 (2007) 1083
,[11] Invariants of knots, embeddings and immersions via contact geometry, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 77
, ,[12] Filtrations on the knot contact homology of transverse knots, Math. Ann. 355 (2013) 1561
, , , ,[13] A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1
, , ,[14] The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177
, , ,[15] Non-isotopic Legendrian submanifolds in $\mathbb R^{2n+1}$, J. Differential Geom. 71 (2005) 85
, , ,[16] Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453
, , ,[17] Legendrian contact homology in $P\times\mathbb R$, Trans. Amer. Math. Soc. 359 (2007) 3301
, , ,[18] Isotopies of Legendrian 1-knots and Legendrian 2-tori, J. Symplectic Geom. 6 (2008) 407
, ,[19] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (1998) 327
,[20] Lagrangian intersection Floer theory: anomaly and obstruction, II, AMS/IP Studies in Advanced Mathematics 46, Amer. Math. Soc. (2009)
, , , ,[21] Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1
, , ,[22] Dehn surgery, the fundamental group and SU$(2)$, Math. Res. Lett. 11 (2004) 741
, ,[23] The $N$-copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659
,[24] Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563
,[25] Computable Legendrian invariants, Topology 42 (2003) 55
,[26] Knot and braid invariants from contact homology, I, Geom. Topol. 9 (2005) 247
,[27] Knot and braid invariants from contact homology. II, Geom. Topol. 9 (2005) 1603
,[28] Conormal bundles, contact homology and knot invariants, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8 (2006) 129
,[29] Framed knot contact homology, Duke Math. J. 141 (2008) 365
,[30] Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189
,[31] Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 573
, ,[32] Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 165
,Cité par Sources :