Width is not additive
Geometry & topology, Tome 17 (2013) no. 1, pp. 93-156.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop the construction suggested by Scharlemann and Thompson in [Proc. of the Casson Fest. (2004) 135-144] to obtain an infinite family of pairs of knots Kα and Kα so that w(Kα#Kα) = max{w(Kα),w(Kα)}. This is the first known example of a pair of knots such that w(K#K) < w(K) + w(K) 2 and it establishes that the lower bound w(K#K) max{w(K),w(K)} obtained in Scharlemann and Schultens [Trans. Amer. Math. Soc. 358 (2006) 3781-3805] is best possible. Furthermore, the knots Kα provide an example of knots where the number of critical points for the knot in thin position is greater than the number of critical points for the knot in bridge position.

DOI : 10.2140/gt.2013.17.93
Classification : 57M25, 57M27, 57M50
Keywords: width, thin position, connected sum, high distance surface

Blair, Ryan 1 ; Tomova, Maggy 2

1 Department of Mathematics, University of Pennsylvania, David Rittenhouse Lab, 709 South 33rd Street, Philadelphia, PA 19104-6395, United States
2 Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419, United States
@article{GT_2013_17_1_a3,
     author = {Blair, Ryan and Tomova, Maggy},
     title = {Width is not additive},
     journal = {Geometry & topology},
     pages = {93--156},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.93},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.93/}
}
TY  - JOUR
AU  - Blair, Ryan
AU  - Tomova, Maggy
TI  - Width is not additive
JO  - Geometry & topology
PY  - 2013
SP  - 93
EP  - 156
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.93/
DO  - 10.2140/gt.2013.17.93
ID  - GT_2013_17_1_a3
ER  - 
%0 Journal Article
%A Blair, Ryan
%A Tomova, Maggy
%T Width is not additive
%J Geometry & topology
%D 2013
%P 93-156
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.93/
%R 10.2140/gt.2013.17.93
%F GT_2013_17_1_a3
Blair, Ryan; Tomova, Maggy. Width is not additive. Geometry & topology, Tome 17 (2013) no. 1, pp. 93-156. doi : 10.2140/gt.2013.17.93. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.93/

[1] R C Blair, Bridge number and Conway products, Algebr. Geom. Topol. 10 (2010) 789

[2] R Blair, M Tomova, Companions of the unknot and width additivity, J. Knot Theory Ramifications 20 (2011) 497

[3] R Blair, M Tomova, M Yoshizawa, High distance bridge surfaces

[4] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)" (editor J Leech), Pergamon (1970) 329

[5] D Gabai, Foliations and the topology of 3–manifolds. III, J. Differential Geom. 26 (1987) 479

[6] H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243

[7] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371

[8] D J Heath, T Kobayashi, A search method for thin positions of links, Algebr. Geom. Topol. 5 (2005) 1027

[9] J Johnson, M Tomova, Flipping bridge surfaces and bounds on the stable bridge number

[10] L H Kauffman, S Lambropoulou, Classifying and applying rational knots and rational tangles, from: "Physical knots : knotting, linking, and folding geometric objects in R3 (Las Vegas, NV, 2001)" (editors J A Calvo, K C Millett, E J Rawdon), Contemp. Math. 304, Amer. Math. Soc. (2002) 223

[11] Y Rieck, E Sedgwick, Thin position for a connected sum of small knots, Algebr. Geom. Topol. 2 (2002) 297

[12] J H Rubinstein, An algorithm to recognize the 3–sphere, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)" (editor S D Chatterji), Birkhäuser (1995) 601

[13] M Scharlemann, Thin position in the theory of classical knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 429

[14] M Scharlemann, J Schultens, 3–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781

[15] M Scharlemann, A Thompson, On the additivity of knot width, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 135

[16] H Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245

[17] H Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956) 133

[18] J Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003) 539

[19] A Thompson, Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994) 613

[20] M Tomova, Compressing thin spheres in the complement of a link, Topology Appl. 153 (2006) 2987

[21] M Tomova, Multiple bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007) 957

[22] M Tomova, Cut-disks for level spheres in link and tangle complements, Topology Appl. 156 (2009) 783

[23] Y Q Wu, Thin position and essential planar surfaces, Proc. Amer. Math. Soc. 132 (2004) 3417

Cité par Sources :