Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a noncompact rank one locally symmetric space of finite volume. Then has a finite number of topological ends. In this paper, we show that for any , the with that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant such that –cusped arithmetic orbifolds do not exist in dimension greater than . We make this explicit for one-cusped arithmetic hyperbolic –orbifolds and prove that none exist for .
Stover, Matthew 1
@article{GT_2013_17_2_a4, author = {Stover, Matthew}, title = {On the number of ends of rank one locally symmetric spaces}, journal = {Geometry & topology}, pages = {905--924}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.905}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/} }
Stover, Matthew. On the number of ends of rank one locally symmetric spaces. Geometry & topology, Tome 17 (2013) no. 2, pp. 905-924. doi : 10.2140/gt.2013.17.905. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/
[1] Reflection groups on the octave hyperbolic plane, J. Algebra 213 (1999) 467
,[2] On volumes of arithmetic quotients of $\mathrm{SO}(1,n)$, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 749
,[3] On volumes of arithmetic quotients of $\mathrm{PO}(n,1)^\circ$, $n$ odd, Proc. Lond. Math. Soc. 105 (2012) 541
, ,[4] Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. (1963) 5
,[5] Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles 1341, Hermann (1969) 125
,[6] Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991)
,[7] Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory Applications, Birkhäuser (2006)
, ,[8] Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 119
, ,[9] Rational quadratic forms, London Mathematical Society Monographs 13, Academic Press (1978)
,[10] Cusps of minimal non-compact arithmetic hyperbolic 3-orbifolds, Pure Appl. Math. Q. 4 (2008) 1013
, , ,[11] Archimedean superrigidity and hyperbolic geometry, Ann. of Math. 135 (1992) 165
,[12] One-class spinor genera of positive quadratic forms, Acta Arith. 58 (1991) 133
, ,[13] Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. (1988) 93
, ,[14] Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) 165
, ,[15] The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007) 208
,[16] A dimension formula for a certain space of automorphic forms of $\mathrm{SU}(p,1)$, II: the case of $\Gamma(N)$ with $N\geq 3$, Tohoku Math. J. 37 (1985) 571
,[17] The book of involutions, American Mathematical Society Colloquium Publications 44, American Mathematical Society (1998)
, , , ,[18] Algebraic groups and number theory, Pure and Applied Mathematics 139, Academic Press (1994)
, ,[19] Volumes of $S$-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91
,[20] Cusps of Picard modular surfaces, Geom. Dedicata 157 (2012) 239
,[21] Classification of algebraic semisimple groups, from: "Algebraic groups and discontinuous subgroups", Amer. Math. Soc. (1966) 33
,[22] Reductive groups over local fields, from: "Automorphic forms, representations and $L$-functions, Part 1" (editors A Borel, W Casselman), Proc. Sympos. Pure Math. 33, Amer. Math. Soc. (1979) 29
,[23] Discrete groups of motions of spaces of constant curvature, from: "Geometry, II" (editor È B Vinberg), Encyclopaedia Math. Sci. 29, Springer (1993) 139
, ,[24] The class-number of a positive quadratic form, Proc. London Math. Soc. 13 (1963) 549
,[25] One-class genera of positive quadratic forms in nine and ten variables, Mathematika 25 (1978) 57
,[26] Spitzenanzahlen und Volumina Picardscher Modulvarietäten, PhD thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn (1981)
,Cité par Sources :