On the number of ends of rank one locally symmetric spaces
Geometry & topology, Tome 17 (2013) no. 2, pp. 905-924.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Y be a noncompact rank one locally symmetric space of finite volume. Then Y has a finite number e(Y ) > 0 of topological ends. In this paper, we show that for any n , the Y with e(Y ) n that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant cn such that n–cusped arithmetic orbifolds do not exist in dimension greater than cn. We make this explicit for one-cusped arithmetic hyperbolic n–orbifolds and prove that none exist for n 30.

DOI : 10.2140/gt.2013.17.905
Classification : 11F06, 20H10, 22E40
Keywords: locally symmetric spaces, arithmetic lattices, rank one geometry, cusps

Stover, Matthew 1

1 Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, USA
@article{GT_2013_17_2_a4,
     author = {Stover, Matthew},
     title = {On the number of ends of rank one locally symmetric spaces},
     journal = {Geometry & topology},
     pages = {905--924},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.905},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/}
}
TY  - JOUR
AU  - Stover, Matthew
TI  - On the number of ends of rank one locally symmetric spaces
JO  - Geometry & topology
PY  - 2013
SP  - 905
EP  - 924
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/
DO  - 10.2140/gt.2013.17.905
ID  - GT_2013_17_2_a4
ER  - 
%0 Journal Article
%A Stover, Matthew
%T On the number of ends of rank one locally symmetric spaces
%J Geometry & topology
%D 2013
%P 905-924
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/
%R 10.2140/gt.2013.17.905
%F GT_2013_17_2_a4
Stover, Matthew. On the number of ends of rank one locally symmetric spaces. Geometry & topology, Tome 17 (2013) no. 2, pp. 905-924. doi : 10.2140/gt.2013.17.905. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.905/

[1] D Allcock, Reflection groups on the octave hyperbolic plane, J. Algebra 213 (1999) 467

[2] M Belolipetsky, On volumes of arithmetic quotients of $\mathrm{SO}(1,n)$, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 749

[3] M Belolipetsky, V Emery, On volumes of arithmetic quotients of $\mathrm{PO}(n,1)^\circ$, $n$ odd, Proc. Lond. Math. Soc. 105 (2012) 541

[4] A Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. (1963) 5

[5] A Borel, Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles 1341, Hermann (1969) 125

[6] A Borel, Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991)

[7] A Borel, L Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory Applications, Birkhäuser (2006)

[8] A Borel, G Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 119

[9] J W S Cassels, Rational quadratic forms, London Mathematical Society Monographs 13, Academic Press (1978)

[10] T Chinburg, D Long, A W Reid, Cusps of minimal non-compact arithmetic hyperbolic 3-orbifolds, Pure Appl. Math. Q. 4 (2008) 1013

[11] K Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. 135 (1992) 165

[12] A G Earnest, J S Hsia, One-class spinor genera of positive quadratic forms, Acta Arith. 58 (1991) 133

[13] M Gromov, I Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. (1988) 93

[14] M Gromov, R Schoen, Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) 165

[15] T Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007) 208

[16] S Kato, A dimension formula for a certain space of automorphic forms of $\mathrm{SU}(p,1)$, II: the case of $\Gamma(N)$ with $N\geq 3$, Tohoku Math. J. 37 (1985) 571

[17] M A Knus, A Merkurjev, M Rost, J P Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44, American Mathematical Society (1998)

[18] V Platonov, A Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics 139, Academic Press (1994)

[19] G Prasad, Volumes of $S$-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91

[20] M Stover, Cusps of Picard modular surfaces, Geom. Dedicata 157 (2012) 239

[21] J Tits, Classification of algebraic semisimple groups, from: "Algebraic groups and discontinuous subgroups", Amer. Math. Soc. (1966) 33

[22] J Tits, Reductive groups over local fields, from: "Automorphic forms, representations and $L$-functions, Part 1" (editors A Borel, W Casselman), Proc. Sympos. Pure Math. 33, Amer. Math. Soc. (1979) 29

[23] È B Vinberg, O V Shvartsman, Discrete groups of motions of spaces of constant curvature, from: "Geometry, II" (editor È B Vinberg), Encyclopaedia Math. Sci. 29, Springer (1993) 139

[24] G L Watson, The class-number of a positive quadratic form, Proc. London Math. Soc. 13 (1963) 549

[25] G L Watson, One-class genera of positive quadratic forms in nine and ten variables, Mathematika 25 (1978) 57

[26] H Zeltinger, Spitzenanzahlen und Volumina Picardscher Modulvarietäten, PhD thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn (1981)

Cité par Sources :