Deriving Deligne–Mumford stacks with perfect obstruction theories
Geometry & topology, Tome 17 (2013) no. 1, pp. 73-92.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that every n–connective quasi-coherent obstruction theory on a Deligne–Mumford stack comes from the structure of a connective spectral Deligne–Mumford stack on the underlying topos. Working over a base ring containing the rationals, we obtain the corresponding result for derived Deligne–Mumford stacks.

DOI : 10.2140/gt.2013.17.73
Classification : 14A20, 18G55, 55P43
Keywords: perfect obstruction theory, derived moduli space

Schürg, Timo 1

1 Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
@article{GT_2013_17_1_a2,
     author = {Sch\"urg, Timo},
     title = {Deriving {Deligne{\textendash}Mumford} stacks with perfect obstruction theories},
     journal = {Geometry & topology},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.73},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/}
}
TY  - JOUR
AU  - Schürg, Timo
TI  - Deriving Deligne–Mumford stacks with perfect obstruction theories
JO  - Geometry & topology
PY  - 2013
SP  - 73
EP  - 92
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/
DO  - 10.2140/gt.2013.17.73
ID  - GT_2013_17_1_a2
ER  - 
%0 Journal Article
%A Schürg, Timo
%T Deriving Deligne–Mumford stacks with perfect obstruction theories
%J Geometry & topology
%D 2013
%P 73-92
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/
%R 10.2140/gt.2013.17.73
%F GT_2013_17_1_a2
Schürg, Timo. Deriving Deligne–Mumford stacks with perfect obstruction theories. Geometry & topology, Tome 17 (2013) no. 1, pp. 73-92. doi : 10.2140/gt.2013.17.73. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/

[1] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[2] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335

[3] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[4] J Lurie, Derived algebraic geometry, PhD thesis, Massachusetts Institute of Technology (2004)

[5] J Lurie, A survey of elliptic cohomology (2007)

[6] J Lurie, Quasi-coherent sheaves and Tannaka duality theorems (2011)

[7] J Lurie, Spectral schemes (2011)

[8] J Lurie, Higher algebra (2012)

[9] B Toën, Higher and derived stacks: a global overview, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435

[10] B Toën, G Vezzosi, From HAG to DAG : derived moduli stacks, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer Acad. Publ. (2004) 173

[11] B Toën, G Vezzosi, Homotopical algebraic geometry, II : geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008)

Cité par Sources :