Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that every –connective quasi-coherent obstruction theory on a Deligne–Mumford stack comes from the structure of a connective spectral Deligne–Mumford stack on the underlying topos. Working over a base ring containing the rationals, we obtain the corresponding result for derived Deligne–Mumford stacks.
Schürg, Timo 1
@article{GT_2013_17_1_a2, author = {Sch\"urg, Timo}, title = {Deriving {Deligne{\textendash}Mumford} stacks with perfect obstruction theories}, journal = {Geometry & topology}, pages = {73--92}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.73}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/} }
Schürg, Timo. Deriving Deligne–Mumford stacks with perfect obstruction theories. Geometry & topology, Tome 17 (2013) no. 1, pp. 73-92. doi : 10.2140/gt.2013.17.73. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.73/
[1] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[2] Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335
,[3] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[4] Derived algebraic geometry, PhD thesis, Massachusetts Institute of Technology (2004)
,[5] A survey of elliptic cohomology (2007)
,[6] Quasi-coherent sheaves and Tannaka duality theorems (2011)
,[7] Spectral schemes (2011)
,[8] Higher algebra (2012)
,[9] Higher and derived stacks: a global overview, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435
,[10] From HAG to DAG : derived moduli stacks, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer Acad. Publ. (2004) 173
, ,[11] Homotopical algebraic geometry, II : geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008)
, ,Cité par Sources :