Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be an embedded closed connected exact Lagrangian submanifold in a connected cotangent bundle . In this paper we prove that such an embedding is, up to a finite covering space lift of , a homology equivalence. We prove this by constructing a fibrant parametrized family of ring spectra parametrized by the manifold . The homology of will be the (twisted) symplectic cohomology of . The fibrancy property will imply that there is a Serre spectral sequence converging to the homology of . The fiber-wise ring structure combined with the intersection product on induces a product on this spectral sequence. This product structure and its relation to the intersection product on is then used to obtain the result. Combining this result with work of Abouzaid we arrive at the conclusion that is always a homotopy equivalence.
Kragh, Thomas 1
@article{GT_2013_17_2_a1, author = {Kragh, Thomas}, title = {Parametrized ring-spectra and the nearby {Lagrangian} conjecture}, journal = {Geometry & topology}, pages = {639--731}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.639}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/} }
Kragh, Thomas. Parametrized ring-spectra and the nearby Lagrangian conjecture. Geometry & topology, Tome 17 (2013) no. 2, pp. 639-731. doi : 10.2140/gt.2013.17.639. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/
[1] On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254
, ,[2] A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. (2010) 191
,[3] A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011) 894
,[4] Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012) 251
,[5] Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 293
,[6] The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 77
, , ,[7] Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society (1978)
,[8] The degree of a map, Proc. London Math. Soc. 16 (1966) 369
,[9] Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1
, , ,[10] Algebraic topology, Cambridge Univ. Press (2002)
,[11] Spectral sequences in algebraic topology (2004)
,[12] The Viterbo transfer as a map of spectra (2009)
,[13] Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv. 66 (1991) 18
, ,[14] Parametrized homotopy theory, Mathematical Surveys and Monographs 132, American Mathematical Society (2006)
, ,[15] A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001)
,[16] Morse theory, Annals of Mathematics Studies 51, Princeton Univ. Press (1963)
,[17] Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1
,[18] Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050
, ,[19] Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075
, ,[20] Generating functions, symplectic geometry, and applications, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 537
,[21] Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces, J. Differential Geom. 47 (1997) 420
,Cité par Sources :