Parametrized ring-spectra and the nearby Lagrangian conjecture
Geometry & topology, Tome 17 (2013) no. 2, pp. 639-731.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let L be an embedded closed connected exact Lagrangian submanifold in a connected cotangent bundle TN. In this paper we prove that such an embedding is, up to a finite covering space lift of TN, a homology equivalence. We prove this by constructing a fibrant parametrized family of ring spectra parametrized by the manifold N. The homology of will be the (twisted) symplectic cohomology of TL. The fibrancy property will imply that there is a Serre spectral sequence converging to the homology of . The fiber-wise ring structure combined with the intersection product on N induces a product on this spectral sequence. This product structure and its relation to the intersection product on L is then used to obtain the result. Combining this result with work of Abouzaid we arrive at the conclusion that L N is always a homotopy equivalence.

DOI : 10.2140/gt.2013.17.639
Classification : 53D12, 55R70, 55T10
Keywords: exact Lagrangian, cotangent bundle, parametrized spectrum, nearby Lagrangian conjecture, Maslov index, Floer homotopy

Kragh, Thomas 1

1 Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden
@article{GT_2013_17_2_a1,
     author = {Kragh, Thomas},
     title = {Parametrized ring-spectra and the nearby {Lagrangian} conjecture},
     journal = {Geometry & topology},
     pages = {639--731},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.639},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/}
}
TY  - JOUR
AU  - Kragh, Thomas
TI  - Parametrized ring-spectra and the nearby Lagrangian conjecture
JO  - Geometry & topology
PY  - 2013
SP  - 639
EP  - 731
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/
DO  - 10.2140/gt.2013.17.639
ID  - GT_2013_17_2_a1
ER  - 
%0 Journal Article
%A Kragh, Thomas
%T Parametrized ring-spectra and the nearby Lagrangian conjecture
%J Geometry & topology
%D 2013
%P 639-731
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/
%R 10.2140/gt.2013.17.639
%F GT_2013_17_2_a1
Kragh, Thomas. Parametrized ring-spectra and the nearby Lagrangian conjecture. Geometry & topology, Tome 17 (2013) no. 2, pp. 639-731. doi : 10.2140/gt.2013.17.639. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.639/

[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254

[2] M Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. (2010) 191

[3] M Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011) 894

[4] M Abouzaid, Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012) 251

[5] M Chaperon, Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 293

[6] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 77

[7] C Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society (1978)

[8] D B A Epstein, The degree of a map, Proc. London Math. Soc. 16 (1966) 369

[9] K Fukaya, P Seidel, I Smith, Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1

[10] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[11] A Hatcher, Spectral sequences in algebraic topology (2004)

[12] T Kragh, The Viterbo transfer as a map of spectra (2009)

[13] F Lalonde, J C Sikorav, Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv. 66 (1991) 18

[14] J P May, J Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs 132, American Mathematical Society (2006)

[15] J Mccleary, A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001)

[16] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton Univ. Press (1963)

[17] D Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1

[18] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050

[19] R P Thomas, S T Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075

[20] C Viterbo, Generating functions, symplectic geometry, and applications, from: "Proceedings of the International Congress of Mathematicians" (editor S D Chatterji), Birkhäuser (1995) 537

[21] C Viterbo, Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces, J. Differential Geom. 47 (1997) 420

Cité par Sources :