Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that there exists a natural bijection between the set of finite volume oriented convex projective surfaces with nonabelian fundamental group and the set of finite volume hyperbolic Riemann surfaces endowed with a holomorphic cubic differential with poles of order at most 2 at the cusps.
Benoist, Yves 1 ; Hulin, Dominique 1
@article{GT_2013_17_1_a15, author = {Benoist, Yves and Hulin, Dominique}, title = {Cubic differentials and finite volume convex projective surfaces}, journal = {Geometry & topology}, pages = {595--620}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.595}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/} }
TY - JOUR AU - Benoist, Yves AU - Hulin, Dominique TI - Cubic differentials and finite volume convex projective surfaces JO - Geometry & topology PY - 2013 SP - 595 EP - 620 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/ DO - 10.2140/gt.2013.17.595 ID - GT_2013_17_1_a15 ER -
Benoist, Yves; Hulin, Dominique. Cubic differentials and finite volume convex projective surfaces. Geometry & topology, Tome 17 (2013) no. 1, pp. 595-620. doi : 10.2140/gt.2013.17.595. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/
[1] An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938) 359
,[2] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229
,[3] Complete affine hyperspheres, I, from: "Symposia Mathematica, Vol. X", Academic Press (1972) 19
,[4] On the regularity of the Monge–Ampère equation det(∂2u∕∂xi∂xj) = F(x,u), Comm. Pure Appl. Math. 30 (1977) 41
, ,[5] Complete affine hypersurfaces, I, The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839
, ,[6] On a conjecture by E. Calabi, Geom. Dedicata 11 (1981) 387
,[7] Elliptic partial differential equations of second order, , Springer (2001)
, ,[8] Projective geometry on manifolds, Lecture notes (1988)
,[9] Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791
,[10] Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007) 1057
,[11] Convex fundamental domains for properly convex real projective structures
,[12] Calabi conjecture on hyperbolic affine hyperspheres, II, Math. Ann. 293 (1992) 485
,[13] Applications of affine differential geometry to RP2 surfaces, PhD thesis, Rutgers University (1999)
,[14] Affine spheres and convex RPn–manifolds, Amer. J. Math. 123 (2001) 255
,[15] The compactification of the moduli space of convex RP2 surfaces, I, J. Differential Geom. 68 (2004) 223
,[16] Survey on affine spheres, from: "Handbook of geometric analysis, No. 2" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. (ALM) 13, Int. Press, Somerville, MA (2010) 161
,[17] Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010) 2103
,[18] Surface projective convexe de volume fini, Ann. Inst. Fourier (Grenoble) 62 (2012) 325
,[19] Affine differential geometry, 111, Cambridge Univ. Press (1994)
, ,[20] The Schwarz lemma for nonpositively curved Riemannian surfaces, Manuscripta Math. 72 (1991) 251
,[21] The Monge–Ampère equation and its geometric applications, from: "Handbook of geometric analysis, No. 1" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. (ALM) 7, Int. Press, Somerville, MA (2008) 467
, ,[22] Some examples of complete hyperbolic affine 2–spheres in R3, from: "Global differential geometry and global analysis" (editors D Ferus, U Pinkall, U Simon, B Wegner), Lecture Notes in Math. 1481, Springer (1991) 271
,[23] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201
,Cité par Sources :