Cubic differentials and finite volume convex projective surfaces
Geometry & topology, Tome 17 (2013) no. 1, pp. 595-620.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that there exists a natural bijection between the set of finite volume oriented convex projective surfaces with nonabelian fundamental group and the set of finite volume hyperbolic Riemann surfaces endowed with a holomorphic cubic differential with poles of order at most 2 at the cusps.

DOI : 10.2140/gt.2013.17.595
Classification : 30F30, 35J96, 53A15, 57M50, 53C56
Keywords: affine spheres, convex projective surfaces, Teichmüller spaces, cubic differentials, Monge-Ampère equations

Benoist, Yves 1 ; Hulin, Dominique 1

1 Département de Mathématiques, Université Paris-Sud, Bâtiment 425, Faculté des Sciences d’Orsay, 91405 Orsay Cedex, France
@article{GT_2013_17_1_a15,
     author = {Benoist, Yves and Hulin, Dominique},
     title = {Cubic differentials and finite volume convex projective surfaces},
     journal = {Geometry & topology},
     pages = {595--620},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.595},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/}
}
TY  - JOUR
AU  - Benoist, Yves
AU  - Hulin, Dominique
TI  - Cubic differentials and finite volume convex projective surfaces
JO  - Geometry & topology
PY  - 2013
SP  - 595
EP  - 620
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/
DO  - 10.2140/gt.2013.17.595
ID  - GT_2013_17_1_a15
ER  - 
%0 Journal Article
%A Benoist, Yves
%A Hulin, Dominique
%T Cubic differentials and finite volume convex projective surfaces
%J Geometry & topology
%D 2013
%P 595-620
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/
%R 10.2140/gt.2013.17.595
%F GT_2013_17_1_a15
Benoist, Yves; Hulin, Dominique. Cubic differentials and finite volume convex projective surfaces. Geometry & topology, Tome 17 (2013) no. 1, pp. 595-620. doi : 10.2140/gt.2013.17.595. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.595/

[1] L V Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938) 359

[2] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[3] E Calabi, Complete affine hyperspheres, I, from: "Symposia Mathematica, Vol. X", Academic Press (1972) 19

[4] S Y Cheng, S T Yau, On the regularity of the Monge–Ampère equation det(∂2u∕∂xi∂xj) = F(x,u), Comm. Pure Appl. Math. 30 (1977) 41

[5] S Y Cheng, S T Yau, Complete affine hypersurfaces, I, The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839

[6] S Gigena, On a conjecture by E. Calabi, Geom. Dedicata 11 (1981) 387

[7] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, , Springer (2001)

[8] W Goldman, Projective geometry on manifolds, Lecture notes (1988)

[9] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[10] F Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007) 1057

[11] J Lee, Convex fundamental domains for properly convex real projective structures

[12] A M Li, Calabi conjecture on hyperbolic affine hyperspheres, II, Math. Ann. 293 (1992) 485

[13] J Loftin, Applications of affine differential geometry to RP2 surfaces, PhD thesis, Rutgers University (1999)

[14] J C Loftin, Affine spheres and convex RPn–manifolds, Amer. J. Math. 123 (2001) 255

[15] J C Loftin, The compactification of the moduli space of convex RP2 surfaces, I, J. Differential Geom. 68 (2004) 223

[16] J Loftin, Survey on affine spheres, from: "Handbook of geometric analysis, No. 2" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. (ALM) 13, Int. Press, Somerville, MA (2010) 161

[17] L Marquis, Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010) 2103

[18] L Marquis, Surface projective convexe de volume fini, Ann. Inst. Fourier (Grenoble) 62 (2012) 325

[19] K Nomizu, T Sasaki, Affine differential geometry, 111, Cambridge Univ. Press (1994)

[20] M Troyanov, The Schwarz lemma for nonpositively curved Riemannian surfaces, Manuscripta Math. 72 (1991) 251

[21] N S Trudinger, X J Wang, The Monge–Ampère equation and its geometric applications, from: "Handbook of geometric analysis, No. 1" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. (ALM) 7, Int. Press, Somerville, MA (2008) 467

[22] C P Wang, Some examples of complete hyperbolic affine 2–spheres in R3, from: "Global differential geometry and global analysis" (editors D Ferus, U Pinkall, U Simon, B Wegner), Lecture Notes in Math. 1481, Springer (1991) 271

[23] S T Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201

Cité par Sources :