On the Hopf conjecture with symmetry
Geometry & topology, Tome 17 (2013) no. 1, pp. 563-593.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Hopf conjecture states that an even-dimensional, positively curved Riemannian manifold has positive Euler characteristic. We prove this conjecture under the additional assumption that a torus acts by isometries and has dimension bounded from below by a logarithmic function of the manifold dimension. The main new tool is the action of the Steenrod algebra on cohomology.

DOI : 10.2140/gt.2013.17.563
Classification : 53C20, 55S10
Keywords: positive sectional curvature, Hopf conjecture, Grove program, Steenrod algebra

Kennard, Lee 1

1 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA 93106-3080, USA
@article{GT_2013_17_1_a14,
     author = {Kennard, Lee},
     title = {On the {Hopf} conjecture with symmetry},
     journal = {Geometry & topology},
     pages = {563--593},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.563},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.563/}
}
TY  - JOUR
AU  - Kennard, Lee
TI  - On the Hopf conjecture with symmetry
JO  - Geometry & topology
PY  - 2013
SP  - 563
EP  - 593
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.563/
DO  - 10.2140/gt.2013.17.563
ID  - GT_2013_17_1_a14
ER  - 
%0 Journal Article
%A Kennard, Lee
%T On the Hopf conjecture with symmetry
%J Geometry & topology
%D 2013
%P 563-593
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.563/
%R 10.2140/gt.2013.17.563
%F GT_2013_17_1_a14
Kennard, Lee. On the Hopf conjecture with symmetry. Geometry & topology, Tome 17 (2013) no. 1, pp. 563-593. doi : 10.2140/gt.2013.17.563. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.563/

[1] J F Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960) 20

[2] J Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A. 38 (1952) 720

[3] M Berger, Trois remarques sur les variétés riemanniennes à courbure positive, C. R. Acad. Sci. Paris Sér. A-B 263 (1966)

[4] R L Bishop, S I Goldberg, Some implications of the generalized Gauss–Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964) 508

[5] S S Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955) 117

[6] P E Conner, On the action of the circle group, Michigan Math. J. 4 (1957) 241

[7] O Dearricott, A 7-manifold with positive curvature, Duke Math. J. 158 (2011) 307

[8] K Grove, Developments around positive sectional curvature, from: "Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International Press (2009) 117

[9] K Grove, L Verdiani, W Ziller, An exotic T1S4 with positive curvature, Geom. Funct. Anal. 21 (2011) 499

[10] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[11] A Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962) 112

[12] P Petersen, F Wilhelm, An exotic sphere with positive curvature

[13] T Püttmann, C Searle, The Hopf conjecture for manifolds with low cohomogeneity or high symmetry rank, Proc. Amer. Math. Soc. 130 (2002) 163

[14] X Rong, X Su, The Hopf conjecture for manifolds with abelian group actions, Commun. Contemp. Math. 7 (2005) 121

[15] N Shimada, T Yamanoshita, On triviality of the mod p Hopf invariant, Japan J. Math. 31 (1961) 1

[16] X Su, Y Wang, The Hopf conjecture for positively curved manifolds with discrete abelian group actions, Differential Geom. Appl. 26 (2008) 313

[17] B Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2003) 259

[18] B Wilking, Positively curved manifolds with symmetry, Ann. of Math. 163 (2006) 607

[19] B Wilking, Nonnegatively and positively curved manifolds, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International Press (2007) 25

[20] W Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International Press (2007) 63

Cité par Sources :