Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a thick, spherical building equipped with its natural CAT(1) metric and let be a proper, convex subset of . If is open or if is a closed ball of radius , then , the maximal subcomplex supported by , is –spherical and non-contractible.
Schulz, Bernd 1
@article{GT_2013_17_1_a13, author = {Schulz, Bernd}, title = {Spherical subcomplexes of spherical buildings}, journal = {Geometry & topology}, pages = {531--562}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.531}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.531/} }
Schulz, Bernd. Spherical subcomplexes of spherical buildings. Geometry & topology, Tome 17 (2013) no. 1, pp. 531-562. doi : 10.2140/gt.2013.17.531. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.531/
[1] Finiteness properties of certain arithmetic groups in the function field case, Israel J. Math. 76 (1991) 113
,[2] On the homotopy type of subcomplexes of Tits buildings, Adv. Math. 101 (1993) 78
, ,[3] Endlichkeitseigenschaften der Gruppen SLn(Fq[t]), PhD thesis, Frankfurt am Main (1987)
,[4] Twin buildings and applications to S-arithmetic groups, 1641, Springer (1996)
,[5] Buildings, 248, Springer (2008)
, ,[6] Intersections of apartments, J. Combin. Theory Ser. A 117 (2010) 440
, ,[7] Arithmetic groups over function fields I : A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, J. Reine Angew. Math. 495 (1998) 79
,[8] Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52 (1984) 173
,[9] Topological methods, from: "Handbook of combinatorics, Volume II" (editors R L Graham, M Grötschel, L Lovász), Elsevier (1995) 1819
,[10] Metric spaces of non-positive curvature, 319, Springer (1999)
, ,[11] Finiteness properties of groups, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 45
,[12] The basic diagram of a geometry, from: "Geometries and groups (Berlin, 1981)" (editors M Aigner, D Jungnickel), Lecture Notes in Math. 893, Springer (1981) 1
,[13] Finiteness properties of arithmetic groups over function fields, Invent. Math. 167 (2007) 355
, ,[14] Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011) 395
, ,[15] Finiteness properties of Chevalley groups over a polynomial ring over a finite field
, , ,[16] Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem, Ann. of Math. 177 (2013) 311
, , ,[17] Metric characterizations of spherical and Euclidean buildings, Geom. Topol. 5 (2001) 521
, ,[18] Boundaries of right-angled hyperbolic buildings, Fund. Math. 197 (2007) 123
, ,[19] Homotopy properties of certain complexes associated to spherical buildings, Israel J. Math. 133 (2003) 369
,[20] Homology theory : An introduction to algebraic topology, Cambridge Univ. Press (1960)
, ,[21] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997) 115
, ,[22] Homotopy properties of the poset of nontrivial p–subgroups of a group, Adv. in Math. 28 (1978) 101
,[23] Sphärische Unterkomplexe sphärischer Gebäude, PhD thesis, Frankfurt am Main (2005)
,[24] Algebraic topology, McGraw–Hill Book Co. (1966)
,[25] Homological properties of certain arithmetic groups in the function field case, Invent. Math. 57 (1980) 263
,[26] Buildings of spherical type and finite BN-pairs, 386, Springer (1974)
,[27] Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986) 367
,[28] Spherical posets and homology stability for On,n, Topology 20 (1981) 119
,[29] Finiteness properties of Chevalley groups over the Laurent polynomial ring over a finite field
,Cité par Sources :