Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Nous prouvons l’existence de métriques sans points conjugués dans toute composante connexe de l’espace des métriques lorentziennes du tore ou de la bouteille de Klein. En particulier, l’existence de tores lorentziens sans points conjugués non plats contraste avec la situation riemannienne (théorème de Hopf).
We prove the existence of metrics without conjugate points in any connected component of the space of Lorentzian metrics on the torus or on the Klein bottle. In particular, the existence of nonflat Lorentzian tori without conjugate points contrasts with the Riemannian case (the Hopf Theorem).
Bavard, Christophe 1 ; Mounoud, Pierre 1
@article{GT_2013_17_1_a11, author = {Bavard, Christophe and Mounoud, Pierre}, title = {Sur les surfaces lorentziennes compactes sans points conjugu\'es}, journal = {Geometry & topology}, pages = {469--492}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.469}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.469/} }
TY - JOUR AU - Bavard, Christophe AU - Mounoud, Pierre TI - Sur les surfaces lorentziennes compactes sans points conjugués JO - Geometry & topology PY - 2013 SP - 469 EP - 492 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.469/ DO - 10.2140/gt.2013.17.469 ID - GT_2013_17_1_a11 ER -
Bavard, Christophe; Mounoud, Pierre. Sur les surfaces lorentziennes compactes sans points conjugués. Geometry & topology, Tome 17 (2013) no. 1, pp. 469-492. doi : 10.2140/gt.2013.17.469. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.469/
[1] Boundary and lens rigidity of Lorentzian surfaces, Trans. Amer. Math. Soc. 348 (1996) 2307
, , ,[2] Lorentzian foliations on 3–manifolds, Ergodic Theory Dynam. Systems 26 (2006) 1339
, , ,[3] Cohomology of groups, 87, Springer (1982)
,[4] Stetige Abbildungen und Bettische Gruppen der Dimensionszahlen 1 und 3, Math. Ann. 109 (1934) 525
,[5] Riemannian tori without conjugate points are flat, Geom. Funct. Anal. 4 (1994) 259
, ,[6] Complétude des métriques lorentziennes de T2 et difféormorphismes du cercle, Bol. Soc. Brasil. Mat. 25 (1994) 223
, ,[7] Planes without conjugate points, J. Differential Geom. 22 (1985) 43
, ,[8] Lorentzian manifolds with no null conjugate points, Math. Proc. Cambridge Philos. Soc. 137 (2004) 363
, , ,[9] Traité des fonctions elliptiques et de leurs applications. I, Gauthier-Villars (1886)
,[10] Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U. S. A. 34 (1948) 47
,[11] Homotopy theory, 8, Academic Press (1959)
,[12] Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963) 307
,[13] Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry, Pacific J. Math. 206 (2002) 375
, , ,[14] Semi-Riemannian geometry, with applications to relativity, 103, Academic Press (1983)
,[15] Line elements on the torus, Amer. J. Math. 81 (1959) 617
,[16] On the creation of conjugate points, Math. Z. 208 (1991) 41
,[17] The Topology of Fibre Bundles, 14, Princeton Univ. Press (1951)
,Cité par Sources :