On knot Floer homology in double branched covers
Geometry & topology, Tome 17 (2013) no. 1, pp. 413-467.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a link surgery spectral sequence for each knot Floer homology group for a knot, K, in a three manifold, Y . When K arises as the double cover of an unknot in S3, and Y is the double cover of S3 branched over a link, we relate the E2–page to a version of Khovanov homology for links in an annulus defined by Asaeda, Przytycki and Sikora. Finally we examine the specific cases when the branch locus is a braid, and when it is alternating.

DOI : 10.2140/gt.2013.17.413
Keywords: knot Floer homology, Khovanov homology, branched double cover

Roberts, Lawrence 1

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA
@article{GT_2013_17_1_a10,
     author = {Roberts, Lawrence},
     title = {On knot {Floer} homology in double branched covers},
     journal = {Geometry & topology},
     pages = {413--467},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.413},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.413/}
}
TY  - JOUR
AU  - Roberts, Lawrence
TI  - On knot Floer homology in double branched covers
JO  - Geometry & topology
PY  - 2013
SP  - 413
EP  - 467
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.413/
DO  - 10.2140/gt.2013.17.413
ID  - GT_2013_17_1_a10
ER  - 
%0 Journal Article
%A Roberts, Lawrence
%T On knot Floer homology in double branched covers
%J Geometry & topology
%D 2013
%P 413-467
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.413/
%R 10.2140/gt.2013.17.413
%F GT_2013_17_1_a10
Roberts, Lawrence. On knot Floer homology in double branched covers. Geometry & topology, Tome 17 (2013) no. 1, pp. 413-467. doi : 10.2140/gt.2013.17.413. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.413/

[1] M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of I-bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177

[2] J Baldwin, Private communication

[3] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337

[4] A Champanerkar, I Kofman, Spanning trees and Khovanov homology, Proc. Amer. Math. Soc. 137 (2009) 2157

[5] O T Dasbach, D Futer, E Kalfagianni, X S Lin, N W Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008) 384

[6] J E Grigsby, Knot Floer homology in cyclic branched covers, Algebr. Geom. Topol. 6 (2006) 1355

[7] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[8] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[9] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225

[10] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[11] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[12] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[13] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1

[14] O Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006) 571

[15] O Plamenevskaya, Transverse knots, branched double covers and Heegaard Floer contact invariants, J. Symplectic Geom. 4 (2006) 149

[16] L P Roberts, On knot Floer homology for some fibered knots

[17] L P Roberts, On the Heegaard–Floer link surgery spectal sequence

[18] A Shumakovitch, Torsion in the Khovanov homology

[19] S Wehrli, A spanning tree model for Khovanov homology, J. Knot Theory Ramifications 17 (2008) 1561

Cité par Sources :