Noncoherence of arithmetic hyperbolic lattices
Geometry & topology, Tome 17 (2013) no. 1, pp. 39-71.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that all arithmetic lattices in O(n,1), n 4, n7, are noncoherent. We also establish noncoherence of uniform arithmetic lattices of the simplest type in SU(n,1), n 2, and of uniform lattices in SU(2,1) which have infinite abelianization.

DOI : 10.2140/gt.2013.17.39
Classification : 11F06, 20F67
Keywords: Arithmetic groups, noncoherence, example, sample layout

Kapovich, Michael 1

1 Department of Mathematics, University of California, Davis, CA 95616, USA
@article{GT_2013_17_1_a1,
     author = {Kapovich, Michael},
     title = {Noncoherence of arithmetic hyperbolic lattices},
     journal = {Geometry & topology},
     pages = {39--71},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.39},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.39/}
}
TY  - JOUR
AU  - Kapovich, Michael
TI  - Noncoherence of arithmetic hyperbolic lattices
JO  - Geometry & topology
PY  - 2013
SP  - 39
EP  - 71
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.39/
DO  - 10.2140/gt.2013.17.39
ID  - GT_2013_17_1_a1
ER  - 
%0 Journal Article
%A Kapovich, Michael
%T Noncoherence of arithmetic hyperbolic lattices
%J Geometry & topology
%D 2013
%P 39-71
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.39/
%R 10.2140/gt.2013.17.39
%F GT_2013_17_1_a1
Kapovich, Michael. Noncoherence of arithmetic hyperbolic lattices. Geometry & topology, Tome 17 (2013) no. 1, pp. 39-71. doi : 10.2140/gt.2013.17.39. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.39/

[1] I Agol, Systoles of hyperbolic 4–manifolds

[2] I Agol, The virtual Haken conjecture

[3] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269

[4] I Agol, D D Long, A W Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. 153 (2001) 599

[5] G Baumslag, J E Roseblade, Subgroups of direct products of free groups, J. London Math. Soc. 30 (1984) 44

[6] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445

[7] R Bieri, Homological dimension of discrete groups, , Queen Mary College Department of Pure Mathematics (1981)

[8] J S Birman, A Lubotzky, J Mccarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107

[9] B H Bowditch, G Mess, A 4–dimensional Kleinian group, Trans. Amer. Math. Soc. 344 (1994) 391

[10] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999)

[11] K Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. 135 (1992) 165

[12] P Deligne, G D Mostow, Commensurabilities among lattices in PU(1,n), 132, Princeton Univ. Press (1993)

[13] T Delzant, L’invariant de Bieri–Neumann–Strebel des groupes fondamentaux des variétés kählériennes, Math. Ann. 348 (2010) 119

[14] R Gitik, Doubles of groups and hyperbolic LERF 3–manifolds, Ann. of Math. 150 (1999) 775

[15] R Gitik, Ping-pong on negatively curved groups, J. Algebra 217 (1999) 65

[16] M Gromov, R Schoen, Harmonic maps into singular spaces and p–adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) 165

[17] F J Grunewald, On some groups which cannot be finitely presented, J. London Math. Soc. 17 (1978) 427

[18] F Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008) 167

[19] F Haglund, J Światkowski, Separating quasi-convex subgroups in 7–systolic groups, Groups Geom. Dyn. 2 (2008) 223

[20] M Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949) 421

[21] J Hillman, Private communication (1998)

[22] J A Hillman, Complex surfaces which are fibre bundles, Topology Appl. 100 (2000) 187

[23] J A Hillman, Four-manifolds, geometries and knots, 5 (2002)

[24] J A Hillman, D H Kochloukova, Finiteness conditions and PDr–group covers of PDn–complexes, Math. Z. 256 (2007) 45

[25] M Kapovich, On normal subgroups in the fundamental groups of complex surfaces (1998)

[26] M Kapovich, Representations of polygons of finite groups, Geom. Topol. 9 (2005)

[27] M Kapovich, L Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991) 83

[28] M Kapovich, L Potyagailo, E Vinberg, Noncoherence of some lattices in Isom(Hn), from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr., Geom. Topol. Publ., Coventry (2008) 335

[29] D Kazhdan, Some applications of the Weil representation, J. Analyse Mat. 32 (1977) 235

[30] J S Li, J J Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J. 71 (1993) 365

[31] K Liu, Geometric height inequalities, Math. Res. Lett. 3 (1996) 693

[32] D D Long, G A Niblo, Subgroup separability and 3–manifold groups, Math. Z. 207 (1991) 209

[33] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003)

[34] D Mcreynolds, Arithmetic lattices in SU(n,1) (2007)

[35] V Platonov, A Rapinchuk, Algebraic groups and number theory, 139, Academic Press (1994)

[36] L Potyagaĭlo, The problem of finiteness for Kleinian groups in 3–space, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 619

[37] L Potyagaĭlo, Finitely generated Kleinian groups in 3–space and 3–manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994) 57

[38] J D Rogawski, Automorphic representations of unitary groups in three variables, 123, Princeton Univ. Press (1990)

[39] G P Scott, Compact submanifolds of 3–manifolds, J. London Math. Soc. (2) 7 (1973) 246

[40] G Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978) 555

[41] M Stover, Property (FA) and lattices in SU(2,1), Internat. J. Algebra Comput. 17 (2007) 1335

[42] È B Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. 72 (114) (1967) 471, 303

[43] È B Vinberg, O V Shvartsman, Discrete groups of motions of spaces of constant curvature, from: "Geometry, II", Encyclopaedia Math. Sci. 29, Springer (1993) 139

[44] C Wall, List of problems, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 369

[45] N R Wallach, Square integrable automorphic forms and cohomology of arithmetic quotients of SU(p,q), Math. Ann. 266 (1984) 261

[46] D T Wise, Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math. 51 (2000) 107

[47] D T Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006) 421

[48] D T Wise, Morse theory, random subgraphs, and incoherent groups, Bull. Lond. Math. Soc. 43 (2011) 840

[49] D T Wise, The structure of groups with a quasiconvex hierarchy (2012)

[50] S K Yeung, Virtual first Betti number and integrality of compact complex two-ball quotients, Int. Math. Res. Not. 2004 (2004) 1967

Cité par Sources :