Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop the deformation theory of hyperbolic cone–3–manifolds with cone-angles less than , that is, contained in the interval . In the present paper we focus on deformations keeping the topological type of the cone-manifold fixed. We prove local rigidity for such structures. This gives a positive answer to a question of A Casson.
Weiß, Hartmut 1
@article{GT_2013_17_1_a8, author = {Wei{\ss}, Hartmut}, title = {The deformation theory of hyperbolic cone{\textendash}3{\textendash}manifolds with cone-angles less than 2\ensuremath{\pi}}, journal = {Geometry & topology}, pages = {329--367}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.329}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.329/} }
TY - JOUR AU - Weiß, Hartmut TI - The deformation theory of hyperbolic cone–3–manifolds with cone-angles less than 2π JO - Geometry & topology PY - 2013 SP - 329 EP - 367 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.329/ DO - 10.2140/gt.2013.17.329 ID - GT_2013_17_1_a8 ER -
Weiß, Hartmut. The deformation theory of hyperbolic cone–3–manifolds with cone-angles less than 2π. Geometry & topology, Tome 17 (2013) no. 1, pp. 329-367. doi : 10.2140/gt.2013.17.329. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.329/
[1] Geometrization of 3–dimensional orbifolds, Ann. of Math. 162 (2005) 195
, , ,[2] Hilbert complexes, J. Funct. Anal. 108 (1992) 88
, ,[3] An index theorem for first order regular singular operators, Amer. J. Math. 110 (1988) 659
, ,[4] An example of weak non-rigidity for cone manifolds with vertices, Talk at the third MSJ regional workshop, Tokyo (1998)
,[5] On the Hodge theory of Riemannian pseudomanifolds, from: "Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979)", Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc. (1980) 91
,[6] Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983) 575
,[7] Three-dimensional orbifolds and cone-manifolds, 5, Mathematical Society of Japan (2000)
, , ,[8] Adjoints of elliptic cone operators, Amer. J. Math. 125 (2003) 357
, ,[9] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1
, ,[10] Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001)
,[11] Operators of Fuchs type, conical singularities, and asymptotic methods, 136, B. G. Teubner Verlagsgesellschaft mbH (1997) 190
,[12] Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992) 1119
, ,[13] On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963) 365
, ,[14] Elliptic theory of differential edge operators I, Comm. Partial Differential Equations 16 (1991) 1615
,[15] Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra, J. Differential Geom. 87 (2011) 525
, ,[16] Teichmüller theory for conic surfaces, in preparation
, ,[17] The Atiyah–Patodi–Singer index theorem, 4, A K Peters Ltd. (1993)
,[18] Elliptic operators of totally characteristic type, MSRI preprint (1983)
, ,[19] Deformations of hyperbolic convex polyhedra and cone-3-manifolds, Geom. Dedicata (to appear)
,[20] Complex twist flows on surface group representations and the local shape of the deformation space of hyperbolic cone-3–manifolds, Geom. Topol. 17 (2013) 369
, ,[21] Deforming Euclidean cone 3–manifolds, Geom. Topol. 11 (2007) 1507
, ,[22] Pseudo-differential operators on manifolds with singularities, 24, North-Holland Publishing Co. (1991)
,[23] Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793
,[24] Local rigidity of 3–dimensional cone-manifolds, J. Differential Geom. 71 (2005) 437
,Cité par Sources :