Periodic flats and group actions on locally symmetric spaces
Geometry & topology, Tome 17 (2013) no. 1, pp. 311-327.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use maximal periodic flats to show that on a finite volume irreducible locally symmetric manifold of dimension 3, no metric has more symmetry than the locally symmetric metric. We also show that if a finite volume metric is not locally symmetric, then its lift to the universal cover has discrete isometry group.

DOI : 10.2140/gt.2013.17.311
Classification : 57S15, 57S20
Keywords: aspherical manifolds, locally symmetric spaces, discontinuous transformation groups, smith theory

Avramidi, Grigori 1

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA
@article{GT_2013_17_1_a7,
     author = {Avramidi, Grigori},
     title = {Periodic flats and group actions on locally symmetric spaces},
     journal = {Geometry & topology},
     pages = {311--327},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.311},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.311/}
}
TY  - JOUR
AU  - Avramidi, Grigori
TI  - Periodic flats and group actions on locally symmetric spaces
JO  - Geometry & topology
PY  - 2013
SP  - 311
EP  - 327
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.311/
DO  - 10.2140/gt.2013.17.311
ID  - GT_2013_17_1_a7
ER  - 
%0 Journal Article
%A Avramidi, Grigori
%T Periodic flats and group actions on locally symmetric spaces
%J Geometry & topology
%D 2013
%P 311-327
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.311/
%R 10.2140/gt.2013.17.311
%F GT_2013_17_1_a7
Avramidi, Grigori. Periodic flats and group actions on locally symmetric spaces. Geometry & topology, Tome 17 (2013) no. 1, pp. 311-327. doi : 10.2140/gt.2013.17.311. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.311/

[1] G Avramidi, Smith theory, L2 cohomology, isometries of locally symmetric manifolds and moduli spaces of curves

[2] M Bestvina, M Feighn, Proper actions of lattices on contractible manifolds, Invent. Math. 150 (2002) 237

[3] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436

[4] G E Bredon, Sheaf theory, 170, Springer (1997)

[5] P E Conner, F Raymond, Manifolds with few periodic homeomorphisms, from: "Proceedings of the second conference on compact transformation groups, II" (editors H T Ku, L N Mann, J L Sicks, J C Su), Lecture Notes in Math. 299, Springer (1972) 1

[6] P B Eberlein, Geometry of nonpositively curved manifolds, , University of Chicago Press (1996)

[7] B Farb, S Weinberger, Isometries, rigidity and universal covers, Ann. of Math. 168 (2008) 915

[8] B Farb, S Weinberger, The intrinsic asymmetry and inhomogeneity of Teichmüller space, Duke Math. J. 155 (2010) 91

[9] C Löh, R Sauer, Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume, J. Topol. 2 (2009) 193

[10] S Mac Lane, Homology, , Springer (1995)

[11] K Melnick, Compact Lorentz manifolds with local symmetry, J. Differential Geom. 81 (2009) 355

[12] D Morris, Introduction to arithmetic groups

[13] S B Myers, N E Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939) 400

[14] T T Nguyen Phan, Minimal orbifolds and (a)symmetry of piecewise locally symmetric manifolds

[15] A Pettet, J Souto, Periodic maximal flats are not peripheral

[16] G Prasad, Discrete subgroups isomorphic to lattices in Lie groups, Amer. J. Math. 98 (1976) 853

[17] M S Raghunathan, Discrete subgroups of Lie groups, Math. Student (2007) 59

[18] W Thurston, The geometry and topology of three-manifolds, unpublished notes (1978)

[19] R J Zimmer, Ergodic theory and semisimple groups, 81, Birkhäuser (1984)

Cité par Sources :