A geometric transition from hyperbolic to anti-de Sitter geometry
Geometry & topology, Tome 17 (2013) no. 5, pp. 3077-3134.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti-de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the “other side” of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We demonstrate these methods in the case when the manifold is the unit tangent bundle of the (2,m,m) triangle orbifold for m 5.

DOI : 10.2140/gt.2013.17.3077
Classification : 57M50, 53C15, 53B30, 20H10, 53C30
Keywords: geometric transition, hyperbolic, AdS, cone manifold, tachyon, projective structure, transitional geometry, half-pipe geometry

Danciger, Jeffrey 1

1 Department of Mathematics, University of Texas – Austin, 1 University Station C1200, Austin, TX 78712-0257, USA
@article{GT_2013_17_5_a12,
     author = {Danciger, Jeffrey},
     title = {A geometric transition from hyperbolic to anti-de {Sitter} geometry},
     journal = {Geometry & topology},
     pages = {3077--3134},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.3077},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3077/}
}
TY  - JOUR
AU  - Danciger, Jeffrey
TI  - A geometric transition from hyperbolic to anti-de Sitter geometry
JO  - Geometry & topology
PY  - 2013
SP  - 3077
EP  - 3134
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3077/
DO  - 10.2140/gt.2013.17.3077
ID  - GT_2013_17_5_a12
ER  - 
%0 Journal Article
%A Danciger, Jeffrey
%T A geometric transition from hyperbolic to anti-de Sitter geometry
%J Geometry & topology
%D 2013
%P 3077-3134
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3077/
%R 10.2140/gt.2013.17.3077
%F GT_2013_17_5_a12
Danciger, Jeffrey. A geometric transition from hyperbolic to anti-de Sitter geometry. Geometry & topology, Tome 17 (2013) no. 5, pp. 3077-3134. doi : 10.2140/gt.2013.17.3077. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3077/

[1] L Andersson, T Barbot, R Benedetti, F Bonsante, W M Goldman, F Labourie, K P Scannell, J M Schlenker, Notes on : “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007) 3–45] by G Mess, Geom. Dedicata 126 (2007) 47

[2] T Barbot, F Bonsante, J Danciger, W M Goldman, F Guéritaud, F Kassel, K Krasnov, J M Schlenker, A Zeghib, Some questions on anti de-Sitter geometry

[3] T Barbot, F Bonsante, J M Schlenker, Collisions of particles in locally AdS spacetimes, I : Local description and global examples, Comm. Math. Phys. 308 (2011) 147

[4] J K Beem, P E Ehrlich, K L Easley, Global Lorentzian geometry, 202, Marcel Dekker (1996)

[5] R Benedetti, F Bonsante, Canonical Wick rotations in 3–dimensional gravity, Mem. Amer. Math. Soc. 198 (2009)

[6] Y Benoist, A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. (ALM) 6, International Press (2008) 1

[7] L Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94

[8] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. 162 (2005) 195

[9] K Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Ann. of Math. 166 (2007) 77

[10] S Choi, W M Goldman, The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. 34 (1997) 161

[11] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, 5, Math. Soc. Japan (2000)

[12] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps (2012)

[13] M Crampon, L Marquis, Finitude géométrique en géométrie de Hilbert

[14] J Danciger, Ideal triangulations and geometric transitions

[15] J Danciger, Geometric transitions : From hyperbolic to AdS geometry, PhD thesis, Stanford University (2011)

[16] C Ehresmann, Sur les espaces localement homogénes, Enseign. Math. 35 (1936) 317

[17] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[18] W M Goldman, Locally homogeneous geometric manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 717

[19] M Heusener, J Porti, E Suárez, Regenerating singular hyperbolic structures from Sol, J. Differential Geom. 59 (2001) 439

[20] C D Hodgson, Degeneration and regeneration of hyperbolic structures on three-manifolds, PhD thesis, Princeton University (1986)

[21] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[22] C D Hodgson, S P Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Ann. of Math. 162 (2005) 367

[23] G Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3

[24] J Porti, Regenerating hyperbolic cone 3–manifolds from dimension 2, to appear in Annales de l’Institut Fourier

[25] J Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998) 365

[26] J Porti, Regenerating hyperbolic cone structures from Nil, Geom. Topol. 6 (2002) 815

[27] J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (1994)

[28] J Souto, Hyperbolic cone-manifolds with large cone-angles, Geom. Topol. 7 (2003) 789

[29] W P Thurston, The geometry and topology of 3–manifolds, lecture notes, Princeton University (1978–1981)

[30] W P Thurston, Three-dimensional geometry and topology, Vol. 1, 35, Princeton Univ. Press (1997)

Cité par Sources :