Khovanov module and the detection of unlinks
Geometry & topology, Tome 17 (2013) no. 5, pp. 3027-3076.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study a module structure on Khovanov homology, which we show is natural under the Ozsváth–Szabó spectral sequence to the Floer homology of the branched double cover. As an application, we show that this module structure detects trivial links. A key ingredient of our proof is that the ΛH1–module structure on Heegaard Floer homology detects S1 × S2 connected summands.

DOI : 10.2140/gt.2013.17.3027
Classification : 57M27, 57M25
Keywords: Khovanov module, Heegaard Floer homology, unlinks, branched double cover

Hedden, Matthew 1 ; Ni, Yi 2

1 Department of Mathematics, Michigan State University, A338 WH, East Lansing, MI 48824, USA
2 Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
@article{GT_2013_17_5_a11,
     author = {Hedden, Matthew and Ni, Yi},
     title = {Khovanov module and the detection of unlinks},
     journal = {Geometry & topology},
     pages = {3027--3076},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.3027},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3027/}
}
TY  - JOUR
AU  - Hedden, Matthew
AU  - Ni, Yi
TI  - Khovanov module and the detection of unlinks
JO  - Geometry & topology
PY  - 2013
SP  - 3027
EP  - 3076
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3027/
DO  - 10.2140/gt.2013.17.3027
ID  - GT_2013_17_5_a11
ER  - 
%0 Journal Article
%A Hedden, Matthew
%A Ni, Yi
%T Khovanov module and the detection of unlinks
%J Geometry & topology
%D 2013
%P 3027-3076
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3027/
%R 10.2140/gt.2013.17.3027
%F GT_2013_17_5_a11
Hedden, Matthew; Ni, Yi. Khovanov module and the detection of unlinks. Geometry & topology, Tome 17 (2013) no. 5, pp. 3027-3076. doi : 10.2140/gt.2013.17.3027. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.3027/

[1] J A Baldwin, On the spectral sequence from Khovanov homology to Heegaard Floer homology, Int. Math. Res. Not. 2011 (2011) 3426

[2] J A Baldwin, A S Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886

[3] J A Baldwin, O Plamenevskaya, Khovanov homology, open books, and tight contact structures, Adv. Math. 224 (2010) 2544

[4] S Eliahou, L H Kauffman, M B Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003) 155

[5] Y M Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277

[6] Y M Eliashberg, W P Thurston, Confoliations, 13, Amer. Math. Soc. (1998)

[7] J B Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73

[8] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[9] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editor T Li), Higher Ed. Press (2002) 405

[10] J E Grigsby, S M Wehrli, On the colored Jones polynomial, sutured Floer homology, and knot Floer homology, Adv. Math. 223 (2010) 2114

[11] M Hedden, Khovanov homology of the 2–cable detects the unknot, Math. Res. Lett. 16 (2009) 991

[12] M Hedden, Y Ni, Manifolds with small Heegaard Floer ranks, Geom. Topol. 14 (2010) 1479

[13] M Hedden, L Watson, Does Khovanov homology detect the unknot ?, Amer. J. Math. 132 (2010) 1339

[14] S Jabuka, T E Mark, Product formulae for Ozsváth–Szabó 4–manifold invariants, Geom. Topol. 12 (2008) 1557

[15] V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103

[16] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[17] M Khovanov, Patterns in knot cohomology, I, Experiment. Math. 12 (2003) 365

[18] P B Kronheimer, T S Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[19] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. (2011) 97

[20] J Mccleary, User’s guide to spectral sequences, 12, Publish or Perish (1985)

[21] Y Ni, Nonseparating spheres and twisted Heegaard Floer homology, Algebr. Geom. Topol. 13 (2013) 1143

[22] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[23] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[24] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. 159 (2004) 1159

[25] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027

[26] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[27] P Ozsváth, Z Szabó, On Heegaard diagrams and holomorphic disks, from: "European Congress of Mathematics" (editor A Laptev), Eur. Math. Soc., Zürich (2005) 769

[28] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1

[29] P Ozsváth, Z Szabó, Heegaard diagrams and Floer homology, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc., Zürich (2006) 1083

[30] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[31] P Ozsváth, Z Szabó, An introduction to Heegaard Floer homology, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3

[32] L P Roberts, On knot Floer homology in double branched covers, Geom. Topol. 17 (2013) 413

[33] A Shumakovitch, Torsion of the Khovanov homology

[34] E H Spanier, Algebraic topology, McGraw-Hill (1966)

[35] M B Thistlethwaite, Links with trivial Jones polynomial, J. Knot Theory Ramifications 10 (2001) 641

[36] Z Wu, Perturbed Floer homology of some fibered three-manifolds, Algebr. Geom. Topol. 9 (2009) 337

Cité par Sources :