About the homological discrete Conley index of isolated invariant acyclic continua
Geometry & topology, Tome 17 (2013) no. 5, pp. 2977-3026.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This article includes an almost self-contained exposition on the discrete Conley index and its duality. We work with a locally defined homeomorphism f in d and an acyclic continuum X, such as a cellular set or a fixed point, invariant under f and isolated. We prove that the trace of the first discrete homological Conley index of f and X is greater than or equal to 1 and describe its periodical behavior. If equality holds then the traces of the higher homological indices are 0. In the case of orientation-reversing homeomorphisms of 3, we obtain a characterization of the fixed point index sequence {i(fn,p)}n1 for a fixed point p which is isolated as an invariant set. In particular, we obtain that i(f,p) 1. As a corollary, we prove that there are no minimal orientation-reversing homeomorphisms in 3.

DOI : 10.2140/gt.2013.17.2977
Classification : 37B30, 37C25, 54H25
Keywords: fixed point index, Conley index, filtration pairs

Hernández-Corbato, Luis 1 ; Le Calvez, Patrice 2 ; R Ruiz del Portal, Francisco 1

1 Departamento de Geometría y Topología, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain
2 Institut de Mathematiques de Jussieu, Université Pierre et Marie Curie, UMR 7586 CNRS, Case 247, 4, place Jussieu, 75252 Paris, France
@article{GT_2013_17_5_a10,
     author = {Hern\'andez-Corbato, Luis and Le Calvez, Patrice and R Ruiz del Portal, Francisco},
     title = {About the homological discrete {Conley} index of isolated invariant acyclic continua},
     journal = {Geometry & topology},
     pages = {2977--3026},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2977},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2977/}
}
TY  - JOUR
AU  - Hernández-Corbato, Luis
AU  - Le Calvez, Patrice
AU  - R Ruiz del Portal, Francisco
TI  - About the homological discrete Conley index of isolated invariant acyclic continua
JO  - Geometry & topology
PY  - 2013
SP  - 2977
EP  - 3026
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2977/
DO  - 10.2140/gt.2013.17.2977
ID  - GT_2013_17_5_a10
ER  - 
%0 Journal Article
%A Hernández-Corbato, Luis
%A Le Calvez, Patrice
%A R Ruiz del Portal, Francisco
%T About the homological discrete Conley index of isolated invariant acyclic continua
%J Geometry & topology
%D 2013
%P 2977-3026
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2977/
%R 10.2140/gt.2013.17.2977
%F GT_2013_17_5_a10
Hernández-Corbato, Luis; Le Calvez, Patrice; R Ruiz del Portal, Francisco. About the homological discrete Conley index of isolated invariant acyclic continua. Geometry & topology, Tome 17 (2013) no. 5, pp. 2977-3026. doi : 10.2140/gt.2013.17.2977. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2977/

[1] I K Babenko, S A Bogatyĭ, Behavior of the index of periodic points under iterations of a mapping, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991) 3

[2] M Bonino, Lefschetz index for orientation reversing planar homeomorphisms, Proc. Amer. Math. Soc. 130 (2002) 2173

[3] C Conley, Isolated invariant sets and the Morse index, 38, Amer. Math. Soc. (1978)

[4] A Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983) 419

[5] R Easton, Isolating blocks and epsilon chains for maps, Phys. D 39 (1989) 95

[6] A Fathi, M R Herman, Existence de difféomorphismes minimaux, from: "Dynamical systems, Vol. I", Astérisque 49, Soc. Math. France (1977) 37

[7] J Franks, The Conley index and non-existence of minimal homeomorphisms, Illinois J. Math. 43 (1999) 457

[8] J Franks, D Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (2000) 3305

[9] T Homma, An extension of the Jordan curve theorem, Yokohama Math. J. 1 (1953) 125

[10] J Keesling, On the Whitehead theorem in shape theory, Fund. Math. 92 (1976) 247

[11] P Le Calvez, F R Ruiz Del Portal, J M Salazar, Indices of the iterates of R3–homeomorphisms at fixed points which are isolated invariant sets, J. Lond. Math. Soc. 82 (2010) 683

[12] P Le Calvez, J C Yoccoz, Suite des indices de Lefschetz des itérés pour un domaine de Jordan qui est un bloc isolant, unpublished

[13] P Le Calvez, J C Yoccoz, Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. 146 (1997) 241

[14] S Mardešić, J Segal, Shape theory: The inverse system approach, 26, North-Holland (1982)

[15] R D Mauldin, Editor, The Scottish Book, Birkhäuser (1981)

[16] K Mischaikow, M Mrozek, Conley index, from: "Handbook of dynamical systems, Vol. 2" (editor B Fiedler), North-Holland (2002) 393

[17] N A Nikišin, Fixed points of the diffeomorphisms of the two-sphere that preserve oriented area, Funkcional. Anal. i Priložen. 8 (1974) 84

[18] S Pelikan, E E Slaminka, A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds, Ergodic Theory Dynam. Systems 7 (1987) 463

[19] F R Ruiz Del Portal, J M Salazar, Fixed point index of iterations of local homeomorphisms of the plane : A Conley index approach, Topology 41 (2002) 1199

[20] D Richeson, J Wiseman, A fixed point theorem for bounded dynamical systems, Illinois J. Math. 46 (2002) 491

[21] J J Sánchez-Gabites, Aplicaciones de la topología geométrica y algebraica al estudio de flujos continuos en variedades, PhD Thesis, Universidad Complutense de Madrid (2008)

[22] J J Sánchez-Gabites, How strange can an attractor for a dynamical system in a 3–manifold look ?, Nonlinear Anal. 74 (2011) 6162

[23] C P Simon, A bound for the fixed-point index of an area-preserving map with applications to mechanics, Invent. Math. 26 (1974) 187

[24] A Szymczak, A cup product pairing and time-duality for discrete dynamical systems, Topology 37 (1998) 1299

Cité par Sources :