The gerby Gopakumar–Mariño–Vafa formula
Geometry & topology, Tome 17 (2013) no. 5, pp. 2935-2976.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a formula for certain cubic n–Hodge integrals in terms of loop Schur functions. We use this identity to prove the Gromov–Witten/Donaldson–Thomas correspondence for local n–gerbes over 1.

DOI : 10.2140/gt.2013.17.2935
Classification : 05E05, 14N35, 53D45
Keywords: Gromov–Witten, Donaldson–Thomas, loop Schur

Ross, Dustin 1 ; Zong, Zhengyu 2

1 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Mathematics, Columbia University, New York, NY 10027, USA
@article{GT_2013_17_5_a9,
     author = {Ross, Dustin and Zong, Zhengyu},
     title = {The gerby {Gopakumar{\textendash}Mari\~no{\textendash}Vafa} formula},
     journal = {Geometry & topology},
     pages = {2935--2976},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2935},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/}
}
TY  - JOUR
AU  - Ross, Dustin
AU  - Zong, Zhengyu
TI  - The gerby Gopakumar–Mariño–Vafa formula
JO  - Geometry & topology
PY  - 2013
SP  - 2935
EP  - 2976
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/
DO  - 10.2140/gt.2013.17.2935
ID  - GT_2013_17_5_a9
ER  - 
%0 Journal Article
%A Ross, Dustin
%A Zong, Zhengyu
%T The gerby Gopakumar–Mariño–Vafa formula
%J Geometry & topology
%D 2013
%P 2935-2976
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/
%R 10.2140/gt.2013.17.2935
%F GT_2013_17_5_a9
Ross, Dustin; Zong, Zhengyu. The gerby Gopakumar–Mariño–Vafa formula. Geometry & topology, Tome 17 (2013) no. 5, pp. 2935-2976. doi : 10.2140/gt.2013.17.2935. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/

[1] D Abramovich, B Fantechi, Orbifold techniques in degeneration formulas

[2] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337

[3] M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425

[4] M F Atiyah, R Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1

[5] J Bryan, C Cadman, B Young, The orbifold topological vertex, Adv. Math. 229 (2012) 531

[6] J Bryan, T Graber, R Pandharipande, The orbifold quantum cohomology of C2∕Z3 and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1

[7] C Cadman, R Cavalieri, Gerby localization, Z3–Hodge integrals and the GW theory of [C3∕Z3], Amer. J. Math. 131 (2009) 1009

[8] R Cavalieri, D Ross, Open Gromov–Witten theory and the crepant resolution conjecture, Michigan Math. J. 61 (2012) 807

[9] Q Chen, S Marcus, H Úlfarsson, Very twisted stable maps, Comm. Anal. Geom. 18 (2010) 831

[10] R Dijkgraaf, Mirror symmetry and elliptic curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 149

[11] Ö N Eğecioğlu, J B Remmel, A combinatorial proof of the Giambelli identity for Schur functions, Adv. in Math. 70 (1988) 59

[12] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[13] I B Frenkel, W Wang, Virasoro algebra and wreath product convolution, J. Algebra 242 (2001) 656

[14] H Iritani, Ruan’s conjecture and integral structures in quantum cohomology, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 111

[15] P D Johnson, Double Hurwitz number via the infinite wedge

[16] P D Johnson, Equivariant Gromov–Witten theory of one dimensional stacks, PhD thesis, University of Michigan (2009)

[17] T Lam, P Pylyavskyy, Total positivity in loop groups, I : Whirls and curls, Adv. Math. 230 (2012) 1222

[18] J Li, C C M Liu, K Liu, J Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527

[19] C C M Liu, Localization in Gromov–Witten theory and orbifold Gromov–Witten theory

[20] C C M Liu, K Liu, J Zhou, A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289

[21] C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149

[22] I G Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1995)

[23] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435

[24] K Nakada, q–hook formula of Gansner type for a generalized Young diagram, from: "21st International Conference on Formal Power Series and Algebraic Combinatorics" (editors C Krattenthaler, V Strehl, M Kauers), Discrete Math. Theor. Comput. Science Proc., Assoc. Discrete Math. Theor. Comput. Science (2009) 685

[25] A Okounkov, G Olshanski, Shifted Schur functions, II : The binomial formula for characters of classical groups and its applications, from: "Kirillov’s seminar on representation theory" (editor G I Olshanski), Amer. Math. Soc. Transl. Ser. 2 181, Amer. Math. Soc. (1998) 245

[26] A Okounkov, R Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675

[27] A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561

[28] A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 597

[29] Z Qin, W Wang, Hilbert schemes of points on the minimal resolution and soliton equations, from: "Lie algebras, vertex operator algebras and their applications" (editors Y Z Huang, K C Misra), Contemp. Math. 442, Amer. Math. Soc. (2007) 435

[30] D Ross, Localization and gluing of orbifold amplitudes : The Gromov–Witten orbifold vertex, to appear in Trans. Amer. Math. Soc.

[31] D Ross, The loop Murnaghan–Nakayama rule, to appear in J. Algebraic Combin.

[32] Z Zong, Generalized Mariño–Vafa formula and local Gromov–Witten theory of orbi-curves (2012)

Cité par Sources :