Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a formula for certain cubic –Hodge integrals in terms of loop Schur functions. We use this identity to prove the Gromov–Witten/Donaldson–Thomas correspondence for local –gerbes over .
Ross, Dustin 1 ; Zong, Zhengyu 2
@article{GT_2013_17_5_a9, author = {Ross, Dustin and Zong, Zhengyu}, title = {The gerby {Gopakumar{\textendash}Mari\~no{\textendash}Vafa} formula}, journal = {Geometry & topology}, pages = {2935--2976}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2935}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/} }
Ross, Dustin; Zong, Zhengyu. The gerby Gopakumar–Mariño–Vafa formula. Geometry & topology, Tome 17 (2013) no. 5, pp. 2935-2976. doi : 10.2140/gt.2013.17.2935. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2935/
[1] Orbifold techniques in degeneration formulas
, ,[2] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337
, , ,[3] The topological vertex, Comm. Math. Phys. 254 (2005) 425
, , , ,[4] The moment map and equivariant cohomology, Topology 23 (1984) 1
, ,[5] The orbifold topological vertex, Adv. Math. 229 (2012) 531
, , ,[6] The orbifold quantum cohomology of C2∕Z3 and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1
, , ,[7] Gerby localization, Z3–Hodge integrals and the GW theory of [C3∕Z3], Amer. J. Math. 131 (2009) 1009
, ,[8] Open Gromov–Witten theory and the crepant resolution conjecture, Michigan Math. J. 61 (2012) 807
, ,[9] Very twisted stable maps, Comm. Anal. Geom. 18 (2010) 831
, , ,[10] Mirror symmetry and elliptic curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 149
,[11] A combinatorial proof of the Giambelli identity for Schur functions, Adv. in Math. 70 (1988) 59
, ,[12] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173
, ,[13] Virasoro algebra and wreath product convolution, J. Algebra 242 (2001) 656
, ,[14] Ruan’s conjecture and integral structures in quantum cohomology, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 111
,[15] Double Hurwitz number via the infinite wedge
,[16] Equivariant Gromov–Witten theory of one dimensional stacks, PhD thesis, University of Michigan (2009)
,[17] Total positivity in loop groups, I : Whirls and curls, Adv. Math. 230 (2012) 1222
, ,[18] A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527
, , , ,[19] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory
,[20] A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289
, , ,[21] A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149
, , ,[22] Symmetric functions and Hall polynomials, Oxford University Press (1995)
,[23] Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435
, , , ,[24] q–hook formula of Gansner type for a generalized Young diagram, from: "21st International Conference on Formal Power Series and Algebraic Combinatorics" (editors C Krattenthaler, V Strehl, M Kauers), Discrete Math. Theor. Comput. Science Proc., Assoc. Discrete Math. Theor. Comput. Science (2009) 685
,[25] Shifted Schur functions, II : The binomial formula for characters of classical groups and its applications, from: "Kirillov’s seminar on representation theory" (editor G I Olshanski), Amer. Math. Soc. Transl. Ser. 2 181, Amer. Math. Soc. (1998) 245
, ,[26] Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675
, ,[27] The equivariant Gromov–Witten theory of P1, Ann. of Math. 163 (2006) 561
, ,[28] Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 597
, , ,[29] Hilbert schemes of points on the minimal resolution and soliton equations, from: "Lie algebras, vertex operator algebras and their applications" (editors Y Z Huang, K C Misra), Contemp. Math. 442, Amer. Math. Soc. (2007) 435
, ,[30] Localization and gluing of orbifold amplitudes : The Gromov–Witten orbifold vertex, to appear in Trans. Amer. Math. Soc.
,[31] The loop Murnaghan–Nakayama rule, to appear in J. Algebraic Combin.
,[32] Generalized Mariño–Vafa formula and local Gromov–Witten theory of orbi-curves (2012)
,Cité par Sources :