Toric LeBrun metrics and Joyce metrics
Geometry & topology, Tome 17 (2013) no. 5, pp. 2923-2934.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that, on the connected sum of complex projective planes, any toric LeBrun metric can be identified with a Joyce metric admitting a semi-free circle action through an explicit conformal equivalence. A crucial ingredient of the proof is an explicit connection form for toric LeBrun metrics.

DOI : 10.2140/gt.2013.17.2923
Classification : 53A30
Keywords: toric self-dual metrics

Honda, Nobuhiro 1 ; Viaclovsky, Jeff 2

1 Mathematical Institute, Tohoku University, Sendai, Miyagi, 980-8578, Japan
2 Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
@article{GT_2013_17_5_a8,
     author = {Honda, Nobuhiro and Viaclovsky, Jeff},
     title = {Toric {LeBrun} metrics and {Joyce} metrics},
     journal = {Geometry & topology},
     pages = {2923--2934},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2923},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/}
}
TY  - JOUR
AU  - Honda, Nobuhiro
AU  - Viaclovsky, Jeff
TI  - Toric LeBrun metrics and Joyce metrics
JO  - Geometry & topology
PY  - 2013
SP  - 2923
EP  - 2934
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/
DO  - 10.2140/gt.2013.17.2923
ID  - GT_2013_17_5_a8
ER  - 
%0 Journal Article
%A Honda, Nobuhiro
%A Viaclovsky, Jeff
%T Toric LeBrun metrics and Joyce metrics
%J Geometry & topology
%D 2013
%P 2923-2934
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/
%R 10.2140/gt.2013.17.2923
%F GT_2013_17_5_a8
Honda, Nobuhiro; Viaclovsky, Jeff. Toric LeBrun metrics and Joyce metrics. Geometry & topology, Tome 17 (2013) no. 5, pp. 2923-2934. doi : 10.2140/gt.2013.17.2923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/

[1] A Fujiki, Compact self-dual manifolds with torus actions, J. Differential Geom. 55 (2000) 229

[2] G W Gibbons, S W Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430

[3] N Honda, J Viaclovsky, Conformal symmetries of self-dual hyperbolic monopole metrics, Osaka J. Math. 50 (2013) 197

[4] D D Joyce, Explicit construction of self-dual 4–manifolds, Duke Math. J. 77 (1995) 519

[5] C Lebrun, Anti-self-dual Hermitian metrics on blown-up Hopf surfaces, Math. Ann. 289 (1991) 383

[6] C Lebrun, Explicit self-dual metrics on CP2#⋯#CP2, J. Differential Geom. 34 (1991) 223

[7] C Lebrun, Self-dual manifolds and hyperbolic geometry, from: "Einstein metrics and Yang–Mills connections" (editors T Mabuchi, S Mukai), Lecture Notes in Pure and Appl. Math. 145, Dekker (1993) 99

[8] Y S Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986) 97

Cité par Sources :