Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that, on the connected sum of complex projective planes, any toric LeBrun metric can be identified with a Joyce metric admitting a semi-free circle action through an explicit conformal equivalence. A crucial ingredient of the proof is an explicit connection form for toric LeBrun metrics.
Honda, Nobuhiro 1 ; Viaclovsky, Jeff 2
@article{GT_2013_17_5_a8, author = {Honda, Nobuhiro and Viaclovsky, Jeff}, title = {Toric {LeBrun} metrics and {Joyce} metrics}, journal = {Geometry & topology}, pages = {2923--2934}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2923}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/} }
TY - JOUR AU - Honda, Nobuhiro AU - Viaclovsky, Jeff TI - Toric LeBrun metrics and Joyce metrics JO - Geometry & topology PY - 2013 SP - 2923 EP - 2934 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/ DO - 10.2140/gt.2013.17.2923 ID - GT_2013_17_5_a8 ER -
Honda, Nobuhiro; Viaclovsky, Jeff. Toric LeBrun metrics and Joyce metrics. Geometry & topology, Tome 17 (2013) no. 5, pp. 2923-2934. doi : 10.2140/gt.2013.17.2923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2923/
[1] Compact self-dual manifolds with torus actions, J. Differential Geom. 55 (2000) 229
,[2] Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430
, ,[3] Conformal symmetries of self-dual hyperbolic monopole metrics, Osaka J. Math. 50 (2013) 197
, ,[4] Explicit construction of self-dual 4–manifolds, Duke Math. J. 77 (1995) 519
,[5] Anti-self-dual Hermitian metrics on blown-up Hopf surfaces, Math. Ann. 289 (1991) 383
,[6] Explicit self-dual metrics on CP2#⋯#CP2, J. Differential Geom. 34 (1991) 223
,[7] Self-dual manifolds and hyperbolic geometry, from: "Einstein metrics and Yang–Mills connections" (editors T Mabuchi, S Mukai), Lecture Notes in Pure and Appl. Math. 145, Dekker (1993) 99
,[8] Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986) 97
,Cité par Sources :