Convergence properties of end invariants
Geometry & topology, Tome 17 (2013) no. 5, pp. 2877-2922.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a continuity property for ending invariants of convergent sequences of Kleinian surface groups. We also analyze the bounded curve sets of such groups and show that their projections to non-annular subsurfaces lie a bounded Hausdorff distance from geodesics joining the projections of the ending invariants.

DOI : 10.2140/gt.2013.17.2877
Classification : 30F40, 57M50
Keywords: Kleinian group, hyperbolic 3–manifold, end invariant, ending lamination

Brock, Jeffrey F 1 ; Bromberg, Kenneth W 2 ; Canary, Richard D 3 ; Minsky, Yair N 4

1 Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA
2 Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, USA
3 Department of Mathematics, University of Michigan, Ann Arbor, 2074 East Hall, 530 Church St, Ann Arbor, MI 48109-1043, USA
4 Department of Mathematics, Yale University, 10 Hillhouse Ave, PO Box 208283, New Haven, CT 06511, USA
@article{GT_2013_17_5_a7,
     author = {Brock, Jeffrey F and Bromberg, Kenneth W and Canary, Richard D and Minsky, Yair N},
     title = {Convergence properties of end invariants},
     journal = {Geometry & topology},
     pages = {2877--2922},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2877},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/}
}
TY  - JOUR
AU  - Brock, Jeffrey F
AU  - Bromberg, Kenneth W
AU  - Canary, Richard D
AU  - Minsky, Yair N
TI  - Convergence properties of end invariants
JO  - Geometry & topology
PY  - 2013
SP  - 2877
EP  - 2922
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/
DO  - 10.2140/gt.2013.17.2877
ID  - GT_2013_17_5_a7
ER  - 
%0 Journal Article
%A Brock, Jeffrey F
%A Bromberg, Kenneth W
%A Canary, Richard D
%A Minsky, Yair N
%T Convergence properties of end invariants
%J Geometry & topology
%D 2013
%P 2877-2922
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/
%R 10.2140/gt.2013.17.2877
%F GT_2013_17_5_a7
Brock, Jeffrey F; Bromberg, Kenneth W; Canary, Richard D; Minsky, Yair N. Convergence properties of end invariants. Geometry & topology, Tome 17 (2013) no. 5, pp. 2877-2922. doi : 10.2140/gt.2013.17.2877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/

[1] I Agol, Tameness of hyperbolic 3–manifolds

[2] J W Anderson, R D Canary, Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126 (1996) 205

[3] J W Anderson, R D Canary, Cores of hyperbolic 3–manifolds and limits of Kleinian groups, Amer. J. Math. 118 (1996) 745

[4] L Bers, An inequality for Riemann surfaces, from: "Differential geometry and complex analysis" (editors C I, H M Farkas), Springer (1985) 87

[5] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71

[6] B H Bowditch, Length bounds on curves arising from tight geodesics, Geom. Funct. Anal. 17 (2007) 1001

[7] J Brock, Continuity of Thurston’s length function, Geom. Funct. Anal. 10 (2000) 741

[8] J Brock, Boundaries of Teichmüller spaces and end-invariants for hyperbolic 3–manifolds, Duke Math. J. 106 (2001) 527

[9] J Brock, K Bromberg, R D Canary, C Lecuire, Convergence and divergence of Kleinian surface groups, in preparation

[10] J Brock, K W Bromberg, R D Canary, Y N Minsky, Local topology in deformation spaces of hyperbolic 3–manifolds, Geom. Topol. 15 (2011) 1169

[11] J Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1

[12] K Bromberg, The space of Kleinian punctured torus groups is not locally connected, Duke Math. J. 156 (2011) 387

[13] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[14] R D Canary, A covering theorem for hyperbolic 3–manifolds and its applications, Topology 35 (1996) 751

[15] R D Canary, Introductory bumponomics : The topology of deformation spaces of hyperbolic 3–manifolds, from: "Teichmüller theory and moduli problem" (editors I Biswas, R S Kulkarni, S Mitra), Ramanujan Math. Soc. Lect. Notes Ser. 10, Ramanujan Math. Soc. (2010) 131

[16] D B A Epstein, A Marden, V Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. 159 (2004) 305

[17] U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187

[18] E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space

[19] C J Leininger, S Schleimer, Connectivity of the space of ending laminations, Duke Math. J. 150 (2009) 533

[20] A D Magid, Deformation spaces of Kleinian surface groups are not locally connected, Geom. Topol. 16 (2012) 1247

[21] H A Masur, Y N Minsky, Geometry of the complex of curves I : Hyperbolicity, Invent. Math. 138 (1999) 103

[22] H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[23] C T Mcmullen, Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283

[24] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. 149 (1999) 559

[25] Y N Minsky, Kleinian groups and the complex of curves, Geom. Topol. 4 (2000) 117

[26] Y N Minsky, The classification of Kleinian surface groups, I : Models and bounds, Ann. of Math. 171 (2010) 1

[27] K Ohshika, Divergence, exotic convergence and self-bumping in quasi-Fuchsian spaces

[28] W P Thurston, The geometry and topology of 3–manifolds, lecture notes, Princeton University (1978–1981)

Cité par Sources :