Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a continuity property for ending invariants of convergent sequences of Kleinian surface groups. We also analyze the bounded curve sets of such groups and show that their projections to non-annular subsurfaces lie a bounded Hausdorff distance from geodesics joining the projections of the ending invariants.
Brock, Jeffrey F 1 ; Bromberg, Kenneth W 2 ; Canary, Richard D 3 ; Minsky, Yair N 4
@article{GT_2013_17_5_a7, author = {Brock, Jeffrey F and Bromberg, Kenneth W and Canary, Richard D and Minsky, Yair N}, title = {Convergence properties of end invariants}, journal = {Geometry & topology}, pages = {2877--2922}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2877}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/} }
TY - JOUR AU - Brock, Jeffrey F AU - Bromberg, Kenneth W AU - Canary, Richard D AU - Minsky, Yair N TI - Convergence properties of end invariants JO - Geometry & topology PY - 2013 SP - 2877 EP - 2922 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/ DO - 10.2140/gt.2013.17.2877 ID - GT_2013_17_5_a7 ER -
%0 Journal Article %A Brock, Jeffrey F %A Bromberg, Kenneth W %A Canary, Richard D %A Minsky, Yair N %T Convergence properties of end invariants %J Geometry & topology %D 2013 %P 2877-2922 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/ %R 10.2140/gt.2013.17.2877 %F GT_2013_17_5_a7
Brock, Jeffrey F; Bromberg, Kenneth W; Canary, Richard D; Minsky, Yair N. Convergence properties of end invariants. Geometry & topology, Tome 17 (2013) no. 5, pp. 2877-2922. doi : 10.2140/gt.2013.17.2877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2877/
[1] Tameness of hyperbolic 3–manifolds
,[2] Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126 (1996) 205
, ,[3] Cores of hyperbolic 3–manifolds and limits of Kleinian groups, Amer. J. Math. 118 (1996) 745
, ,[4] An inequality for Riemann surfaces, from: "Differential geometry and complex analysis" (editors C I, H M Farkas), Springer (1985) 87
,[5] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71
,[6] Length bounds on curves arising from tight geodesics, Geom. Funct. Anal. 17 (2007) 1001
,[7] Continuity of Thurston’s length function, Geom. Funct. Anal. 10 (2000) 741
,[8] Boundaries of Teichmüller spaces and end-invariants for hyperbolic 3–manifolds, Duke Math. J. 106 (2001) 527
,[9] Convergence and divergence of Kleinian surface groups, in preparation
, , , ,[10] Local topology in deformation spaces of hyperbolic 3–manifolds, Geom. Topol. 15 (2011) 1169
, , , ,[11] The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1
, , ,[12] The space of Kleinian punctured torus groups is not locally connected, Duke Math. J. 156 (2011) 387
,[13] Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385
, ,[14] A covering theorem for hyperbolic 3–manifolds and its applications, Topology 35 (1996) 751
,[15] Introductory bumponomics : The topology of deformation spaces of hyperbolic 3–manifolds, from: "Teichmüller theory and moduli problem" (editors I Biswas, R S Kulkarni, S Mitra), Ramanujan Math. Soc. Lect. Notes Ser. 10, Ramanujan Math. Soc. (2010) 131
,[16] Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. 159 (2004) 305
, , ,[17] Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187
,[18] The boundary at infinity of the curve complex and the relative Teichmüller space
,[19] Connectivity of the space of ending laminations, Duke Math. J. 150 (2009) 533
, ,[20] Deformation spaces of Kleinian surface groups are not locally connected, Geom. Topol. 16 (2012) 1247
,[21] Geometry of the complex of curves I : Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[22] Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902
, ,[23] Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283
,[24] The classification of punctured-torus groups, Ann. of Math. 149 (1999) 559
,[25] Kleinian groups and the complex of curves, Geom. Topol. 4 (2000) 117
,[26] The classification of Kleinian surface groups, I : Models and bounds, Ann. of Math. 171 (2010) 1
,[27] Divergence, exotic convergence and self-bumping in quasi-Fuchsian spaces
,[28] The geometry and topology of 3–manifolds, lecture notes, Princeton University (1978–1981)
,Cité par Sources :