The Gromov width of 4–dimensional tori
Geometry & topology, Tome 17 (2013) no. 5, pp. 2813-2853.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let ω be any linear symplectic form on the 4–torus T4. We show that in all cases (T4,ω) can be fully filled by one symplectic ball. If (T4,ω) is not symplectomorphic to a product T2(μ) × T2(μ) of equal sized factors, then it can also be fully filled by any finite collection of balls provided only that their total volume is less than that of (T4,ω).

DOI : 10.2140/gt.2013.17.2813
Classification : 57R17, 57R40, 32J27
Keywords: Gromov width, symplectic embeddings, symplectic packing, symplectic filling, tori

Latschev, Janko 1 ; McDuff, Dusa 2 ; Schlenk, Felix 3

1 Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
2 Mathematics Department, Barnard College, Columbia University, MC4410, 3009 Broadway, New York, NY 10027, USA
3 Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CP 158, CH-2000 Neuchâtel, Switzerland
@article{GT_2013_17_5_a5,
     author = {Latschev, Janko and McDuff, Dusa and Schlenk, Felix},
     title = {The {Gromov} width of 4{\textendash}dimensional tori},
     journal = {Geometry & topology},
     pages = {2813--2853},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2813},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/}
}
TY  - JOUR
AU  - Latschev, Janko
AU  - McDuff, Dusa
AU  - Schlenk, Felix
TI  - The Gromov width of 4–dimensional tori
JO  - Geometry & topology
PY  - 2013
SP  - 2813
EP  - 2853
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/
DO  - 10.2140/gt.2013.17.2813
ID  - GT_2013_17_5_a5
ER  - 
%0 Journal Article
%A Latschev, Janko
%A McDuff, Dusa
%A Schlenk, Felix
%T The Gromov width of 4–dimensional tori
%J Geometry & topology
%D 2013
%P 2813-2853
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/
%R 10.2140/gt.2013.17.2813
%F GT_2013_17_5_a5
Latschev, Janko; McDuff, Dusa; Schlenk, Felix. The Gromov width of 4–dimensional tori. Geometry & topology, Tome 17 (2013) no. 5, pp. 2813-2853. doi : 10.2140/gt.2013.17.2813. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/

[1] T Bauer, Seshadri constants and periods of polarized abelian varieties, Math. Ann. 312 (1998) 607

[2] T Bauer, Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999) 547

[3] T Bauer, T Szemberg, Local positivity of principally polarized abelian threefolds, J. Reine Angew. Math. 531 (2001) 191

[4] P Biran, Symplectic packing in dimension 4, Geom. Funct. Anal. 7 (1997) 420

[5] P Biran, A stability property of symplectic packing, Invent. Math. 136 (1999) 123

[6] P Biran, K Cieliebak, Symplectic topology on subcritical manifolds, Comment. Math. Helv. 76 (2001) 712

[7] C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004)

[8] N Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999) 287

[9] P Cascini, D Panov, Symplectic generic complex structures on four-manifolds with b+ = 1, J. Symplectic Geom. 10 (2012) 493

[10] F Catanese, K Oguiso, T Peternell, On volume-preserving complex structures on real tori, Kyoto J. Math. 50 (2010) 753

[11] O Debarre, Higher-dimensional algebraic geometry, Springer (2001)

[12] T Drăghici, The Kähler cone versus the symplectic cone, Bull. Math. Soc. Sci. Math. Roumanie 42 (1999) 41

[13] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553

[14] G Elencwajg, O Forster, Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier (Grenoble) 32 (1982) 25

[15] C Fefferman, D H Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981) 285

[16] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[17] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser (1994)

[18] M Hutchings, Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231

[19] M Y Jiang, Symplectic embeddings from R2n into some manifolds, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 53

[20] Y Karshon, S Tolman, The Gromov width of complex Grassmannians, Algebr. Geom. Topol. 5 (2005) 911

[21] J L Lagrange, Solution d’un problème d’arithmétique, from: "Oeuvres" (editor J A Serret), Georg Olms Verlag (1973) 671

[22] F Lalonde, D Mcduff, The geometry of symplectic energy, Ann. of Math. 141 (1995) 349

[23] F Lalonde, D Mcduff, Hofer’s L∞–geometry : Energy and stability of Hamiltonian flows, II, Invent. Math. 122 (1995) 35

[24] F Lalonde, D Mcduff, The classification of ruled symplectic 4–manifolds, Math. Res. Lett. 3 (1996) 769

[25] A Lamari, Le cône kählérien d’une surface, J. Math. Pures Appl. 78 (1999) 249

[26] R Lazarsfeld, Lengths of periods and Seshadri constants of abelian varieties, Math. Res. Lett. 3 (1996) 439

[27] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004)

[28] T J Li, M Usher, Symplectic forms and surfaces of negative square, J. Symplectic Geom. 4 (2006) 71

[29] G Lu, Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1

[30] D Mcduff, Blow ups and symplectic embeddings in dimension 4, Topology 30 (1991) 409

[31] D Mcduff, From symplectic deformation to isotopy, from: "Topics in symplectic 4–manifolds" (editor R J Stern), First Int. Press Lect. Ser. 1, Int. Press (1998) 85

[32] D Mcduff, Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002) 197

[33] D Mcduff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405

[34] D Mcduff, D Salamon, Introduction to symplectic topology, The Clarendon Press (1998)

[35] D Mcduff, J Slimowitz, Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799

[36] F Schlenk, Embedding problems in symplectic geometry, 40, de Gruyter (2005)

[37] A Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998) 505

[38] C H Taubes, The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221

[39] C H Taubes, Seiberg Witten and Gromov invariants for symplectic 4–manifolds, 2, Int. Press (2000)

[40] L Traynor, Symplectic packing constructions, J. Differential Geom. 41 (1995) 735

[41] C T C Wall, Diffeomorphisms of 4–manifolds, J. London Math. Soc. 39 (1964) 131

Cité par Sources :