Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be any linear symplectic form on the –torus . We show that in all cases can be fully filled by one symplectic ball. If is not symplectomorphic to a product of equal sized factors, then it can also be fully filled by any finite collection of balls provided only that their total volume is less than that of .
Latschev, Janko 1 ; McDuff, Dusa 2 ; Schlenk, Felix 3
@article{GT_2013_17_5_a5, author = {Latschev, Janko and McDuff, Dusa and Schlenk, Felix}, title = {The {Gromov} width of 4{\textendash}dimensional tori}, journal = {Geometry & topology}, pages = {2813--2853}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2813}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/} }
TY - JOUR AU - Latschev, Janko AU - McDuff, Dusa AU - Schlenk, Felix TI - The Gromov width of 4–dimensional tori JO - Geometry & topology PY - 2013 SP - 2813 EP - 2853 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/ DO - 10.2140/gt.2013.17.2813 ID - GT_2013_17_5_a5 ER -
Latschev, Janko; McDuff, Dusa; Schlenk, Felix. The Gromov width of 4–dimensional tori. Geometry & topology, Tome 17 (2013) no. 5, pp. 2813-2853. doi : 10.2140/gt.2013.17.2813. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2813/
[1] Seshadri constants and periods of polarized abelian varieties, Math. Ann. 312 (1998) 607
,[2] Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999) 547
,[3] Local positivity of principally polarized abelian threefolds, J. Reine Angew. Math. 531 (2001) 191
, ,[4] Symplectic packing in dimension 4, Geom. Funct. Anal. 7 (1997) 420
,[5] A stability property of symplectic packing, Invent. Math. 136 (1999) 123
,[6] Symplectic topology on subcritical manifolds, Comment. Math. Helv. 76 (2001) 712
, ,[7] Complex abelian varieties, 302, Springer (2004)
, ,[8] On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999) 287
,[9] Symplectic generic complex structures on four-manifolds with b+ = 1, J. Symplectic Geom. 10 (2012) 493
, ,[10] On volume-preserving complex structures on real tori, Kyoto J. Math. 50 (2010) 753
, , ,[11] Higher-dimensional algebraic geometry, Springer (2001)
,[12] The Kähler cone versus the symplectic cone, Bull. Math. Soc. Sci. Math. Roumanie 42 (1999) 41
,[13] Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553
, ,[14] Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier (Grenoble) 32 (1982) 25
, ,[15] The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981) 285
, ,[16] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[17] Symplectic invariants and Hamiltonian dynamics, Birkhäuser (1994)
, ,[18] Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231
,[19] Symplectic embeddings from R2n into some manifolds, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 53
,[20] The Gromov width of complex Grassmannians, Algebr. Geom. Topol. 5 (2005) 911
, ,[21] Solution d’un problème d’arithmétique, from: "Oeuvres" (editor J A Serret), Georg Olms Verlag (1973) 671
,[22] The geometry of symplectic energy, Ann. of Math. 141 (1995) 349
, ,[23] Hofer’s L∞–geometry : Energy and stability of Hamiltonian flows, II, Invent. Math. 122 (1995) 35
, ,[24] The classification of ruled symplectic 4–manifolds, Math. Res. Lett. 3 (1996) 769
, ,[25] Le cône kählérien d’une surface, J. Math. Pures Appl. 78 (1999) 249
,[26] Lengths of periods and Seshadri constants of abelian varieties, Math. Res. Lett. 3 (1996) 439
,[27] Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004)
,[28] Symplectic forms and surfaces of negative square, J. Symplectic Geom. 4 (2006) 71
, ,[29] Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1
,[30] Blow ups and symplectic embeddings in dimension 4, Topology 30 (1991) 409
,[31] From symplectic deformation to isotopy, from: "Topics in symplectic 4–manifolds" (editor R J Stern), First Int. Press Lect. Ser. 1, Int. Press (1998) 85
,[32] Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002) 197
,[33] Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405
, ,[34] Introduction to symplectic topology, The Clarendon Press (1998)
, ,[35] Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799
, ,[36] Embedding problems in symplectic geometry, 40, de Gruyter (2005)
,[37] Remarks on Seshadri constants, Math. Z. 227 (1998) 505
,[38] The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221
,[39] Seiberg Witten and Gromov invariants for symplectic 4–manifolds, 2, Int. Press (2000)
,[40] Symplectic packing constructions, J. Differential Geom. 41 (1995) 735
,[41] Diffeomorphisms of 4–manifolds, J. London Math. Soc. 39 (1964) 131
,Cité par Sources :