Uniqueness of Lagrangian self-expanders
Geometry & topology, Tome 17 (2013) no. 5, pp. 2689-2729.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that zero-Maslov class Lagrangian self-expanders in n that are asymptotic to a pair of planes intersecting transversely are locally unique if n > 2 and unique if n = 2.

DOI : 10.2140/gt.2013.17.2689
Classification : 53D12, 53C44
Keywords: Lagrangian mean curvature flow, self-expanders, uniqueness

Lotay, Jason D 1 ; Neves, André 2

1 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
2 Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2RH, UK
@article{GT_2013_17_5_a3,
     author = {Lotay, Jason D and Neves, Andr\'e},
     title = {Uniqueness of {Lagrangian} self-expanders},
     journal = {Geometry & topology},
     pages = {2689--2729},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2689},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/}
}
TY  - JOUR
AU  - Lotay, Jason D
AU  - Neves, André
TI  - Uniqueness of Lagrangian self-expanders
JO  - Geometry & topology
PY  - 2013
SP  - 2689
EP  - 2729
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/
DO  - 10.2140/gt.2013.17.2689
ID  - GT_2013_17_5_a3
ER  - 
%0 Journal Article
%A Lotay, Jason D
%A Neves, André
%T Uniqueness of Lagrangian self-expanders
%J Geometry & topology
%D 2013
%P 2689-2729
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/
%R 10.2140/gt.2013.17.2689
%F GT_2013_17_5_a3
Lotay, Jason D; Neves, André. Uniqueness of Lagrangian self-expanders. Geometry & topology, Tome 17 (2013) no. 5, pp. 2689-2729. doi : 10.2140/gt.2013.17.2689. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/

[1] H Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn, Geom. Dedicata 120 (2006) 37

[2] M Cantor, Sobolev inequalities for Riemannian bundles, from: "Differential geometry, Part 2" (editors S S Chern, R Osserman), Amer. Math. Soc. (1975) 171

[3] I Castro, A M Lerma, Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc. 138 (2010) 1821

[4] A Chau, J Chen, W He, Entire self-similar solutions to Lagrangian mean curvature flow

[5] K Ecker, Regularity theory for mean curvature flow, 57, Birkhäuser (2004)

[6] G Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285

[7] T Ilmanen, Singularities of mean curvature flow of surfaces

[8] T Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994) 90

[9] D Joyce, Special Lagrangian submanifolds with isolated conical singularities, II : Moduli spaces, Ann. Global Anal. Geom. 25 (2004) 301

[10] D Joyce, Y I Lee, M P Tsui, Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010) 127

[11] N V Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 12, Amer. Math. Soc. (1996)

[12] S Lang, Real and functional analysis, 142, Springer (1993)

[13] Y I Lee, M T Wang, Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows, J. Differential Geom. 83 (2009) 27

[14] Y I Lee, M T Wang, Hamiltonian stationary cones and self-similar solutions in higher dimension, Trans. Amer. Math. Soc. 362 (2010) 1491

[15] H Nakahara, Some examples of self-similar solutions and translating solitons for mean curvature flow

[16] A Neves, Singularities of Lagrangian mean curvature flow : Zero-Maslov class case, Invent. Math. 168 (2007) 449

[17] A Neves, Recent progress on singularities of Lagrangian mean curvature flow, from: "Surveys in geometric analysis and relativity" (editors H L Bray, W P Minicozzi II), Adv. Lect. Math. 20, International Press (2011) 413

[18] A Neves, Finite time singularities for Lagrangian mean curvature flow, Ann. of Math. 177 (2013) 1029

[19] A Neves, G Tian, Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc. 365 (2013) 5655

[20] A Cannas Da Silva, Lectures on symplectic geometry, 1764, Springer (2001)

[21] L Simon, Lectures on geometric measure theory, 3, Australian Nat. Univ. Centre Math. Analysis (1983)

[22] R P Thomas, S T Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075

[23] B White, A local regularity theorem for mean curvature flow, Ann. of Math. 161 (2005) 1487

Cité par Sources :