Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that zero-Maslov class Lagrangian self-expanders in that are asymptotic to a pair of planes intersecting transversely are locally unique if and unique if .
Lotay, Jason D 1 ; Neves, André 2
@article{GT_2013_17_5_a3, author = {Lotay, Jason D and Neves, Andr\'e}, title = {Uniqueness of {Lagrangian} self-expanders}, journal = {Geometry & topology}, pages = {2689--2729}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2689}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/} }
Lotay, Jason D; Neves, André. Uniqueness of Lagrangian self-expanders. Geometry & topology, Tome 17 (2013) no. 5, pp. 2689-2729. doi : 10.2140/gt.2013.17.2689. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2689/
[1] Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn, Geom. Dedicata 120 (2006) 37
,[2] Sobolev inequalities for Riemannian bundles, from: "Differential geometry, Part 2" (editors S S Chern, R Osserman), Amer. Math. Soc. (1975) 171
,[3] Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc. 138 (2010) 1821
, ,[4] Entire self-similar solutions to Lagrangian mean curvature flow
, , ,[5] Regularity theory for mean curvature flow, 57, Birkhäuser (2004)
,[6] Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285
,[7] Singularities of mean curvature flow of surfaces
,[8] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994) 90
,[9] Special Lagrangian submanifolds with isolated conical singularities, II : Moduli spaces, Ann. Global Anal. Geom. 25 (2004) 301
,[10] Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010) 127
, , ,[11] Lectures on elliptic and parabolic equations in Hölder spaces, 12, Amer. Math. Soc. (1996)
,[12] Real and functional analysis, 142, Springer (1993)
,[13] Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows, J. Differential Geom. 83 (2009) 27
, ,[14] Hamiltonian stationary cones and self-similar solutions in higher dimension, Trans. Amer. Math. Soc. 362 (2010) 1491
, ,[15] Some examples of self-similar solutions and translating solitons for mean curvature flow
,[16] Singularities of Lagrangian mean curvature flow : Zero-Maslov class case, Invent. Math. 168 (2007) 449
,[17] Recent progress on singularities of Lagrangian mean curvature flow, from: "Surveys in geometric analysis and relativity" (editors H L Bray, W P Minicozzi II), Adv. Lect. Math. 20, International Press (2011) 413
,[18] Finite time singularities for Lagrangian mean curvature flow, Ann. of Math. 177 (2013) 1029
,[19] Translating solutions to Lagrangian mean curvature flow, Trans. Amer. Math. Soc. 365 (2013) 5655
, ,[20] Lectures on symplectic geometry, 1764, Springer (2001)
,[21] Lectures on geometric measure theory, 3, Australian Nat. Univ. Centre Math. Analysis (1983)
,[22] Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075
, ,[23] A local regularity theorem for mean curvature flow, Ann. of Math. 161 (2005) 1487
,Cité par Sources :