Proof of the Arnold chord conjecture in three dimensions, II
Geometry & topology, Tome 17 (2013) no. 5, pp. 2601-2688.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In “Proof of the Arnold chord conjecture in three dimensions, I” [Math. Res. Lett. 18 (2011) 295–313], we deduced the Arnold chord conjecture in three dimensions from another result, which asserts that an exact symplectic cobordism between contact three-manifolds induces a map on (filtered) embedded contact homology satisfying certain axioms. The present paper proves the latter result, thus completing the proof of the three-dimensional chord conjecture. We also prove that filtered embedded contact homology does not depend on the choice of almost complex structure used to define it.

DOI : 10.2140/gt.2013.17.2601
Classification : 53D40, 57R58
Keywords: chord conjecture, embedded contact homology, Seiberg–Witten Floer

Hutchings, Michael 1 ; Taubes, Clifford 2

1 Mathematics Department, University of California, Berkeley, 970 Evans Hall, Berkeley, CA 94720, USA
2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2013_17_5_a2,
     author = {Hutchings, Michael and Taubes, Clifford},
     title = {Proof of the {Arnold} chord conjecture in three dimensions, {II}},
     journal = {Geometry & topology},
     pages = {2601--2688},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2601},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/}
}
TY  - JOUR
AU  - Hutchings, Michael
AU  - Taubes, Clifford
TI  - Proof of the Arnold chord conjecture in three dimensions, II
JO  - Geometry & topology
PY  - 2013
SP  - 2601
EP  - 2688
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/
DO  - 10.2140/gt.2013.17.2601
ID  - GT_2013_17_5_a2
ER  - 
%0 Journal Article
%A Hutchings, Michael
%A Taubes, Clifford
%T Proof of the Arnold chord conjecture in three dimensions, II
%J Geometry & topology
%D 2013
%P 2601-2688
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/
%R 10.2140/gt.2013.17.2601
%F GT_2013_17_5_a2
Hutchings, Michael; Taubes, Clifford. Proof of the Arnold chord conjecture in three dimensions, II. Geometry & topology, Tome 17 (2013) no. 5, pp. 2601-2688. doi : 10.2140/gt.2013.17.2601. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] H Federer, Geometric measure theory, 153, Springer (1969)

[3] C Hummel, Gromov’s compactness theorem for pseudo-holomorphic curves, 151, Birkhäuser (1997)

[4] M Hutchings, Lecture notes on embedded contact homology

[5] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313

[6] M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263

[7] M Hutchings, Embedded contact homology and its applications, from: "Proc. ICM, Vol. II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 1022

[8] M Hutchings, Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231

[9] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169

[10] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, I, J. Symplectic Geom. 5 (2007) 43

[11] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29

[12] M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions, I, Math. Res. Lett. 18 (2011) 295

[13] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007)

[14] J Latschev, C Wendl, Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011) 1144

[15] F Morgan, Geometric measure theory : A beginner’s guide, Elsevier (2009)

[16] C B Morrey Jr., Multiple integrals in the calculus of variations, 130, Springer (1966)

[17] C H Taubes, Gr ⇒ SW : From pseudo-holomorphic curves to Seiberg–Witten solutions, from: "Seiberg–Witten and Gromov invariants for symplectic 4–manifolds" (editor R Wentworth), First Int. Press Lect. Ser. 2, International Press (2000) 163

[18] C H Taubes, SW ⇒ Gr : From the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg–Witten and Gromov invariants for symplectic 4–manifolds" (editor R Wentworth), First Int. Press Lect. Ser. 2, International Press (2000) 1

[19] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[20] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, II : More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337

[21] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497

[22] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583

[23] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721

[24] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819

[25] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961

[26] J G Wolfson, Gromov’s compactness of pseudo-holomorphic curves and symplectic geometry, J. Differential Geom. 28 (1988) 383

[27] R Ye, Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671

Cité par Sources :