Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In “Proof of the Arnold chord conjecture in three dimensions, I” [Math. Res. Lett. 18 (2011) 295–313], we deduced the Arnold chord conjecture in three dimensions from another result, which asserts that an exact symplectic cobordism between contact three-manifolds induces a map on (filtered) embedded contact homology satisfying certain axioms. The present paper proves the latter result, thus completing the proof of the three-dimensional chord conjecture. We also prove that filtered embedded contact homology does not depend on the choice of almost complex structure used to define it.
Hutchings, Michael 1 ; Taubes, Clifford 2
@article{GT_2013_17_5_a2, author = {Hutchings, Michael and Taubes, Clifford}, title = {Proof of the {Arnold} chord conjecture in three dimensions, {II}}, journal = {Geometry & topology}, pages = {2601--2688}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2601}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/} }
TY - JOUR AU - Hutchings, Michael AU - Taubes, Clifford TI - Proof of the Arnold chord conjecture in three dimensions, II JO - Geometry & topology PY - 2013 SP - 2601 EP - 2688 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/ DO - 10.2140/gt.2013.17.2601 ID - GT_2013_17_5_a2 ER -
%0 Journal Article %A Hutchings, Michael %A Taubes, Clifford %T Proof of the Arnold chord conjecture in three dimensions, II %J Geometry & topology %D 2013 %P 2601-2688 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/ %R 10.2140/gt.2013.17.2601 %F GT_2013_17_5_a2
Hutchings, Michael; Taubes, Clifford. Proof of the Arnold chord conjecture in three dimensions, II. Geometry & topology, Tome 17 (2013) no. 5, pp. 2601-2688. doi : 10.2140/gt.2013.17.2601. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2601/
[1] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[2] Geometric measure theory, 153, Springer (1969)
,[3] Gromov’s compactness theorem for pseudo-holomorphic curves, 151, Birkhäuser (1997)
,[4] Lecture notes on embedded contact homology
,[5] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313
,[6] The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263
,[7] Embedded contact homology and its applications, from: "Proc. ICM, Vol. II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 1022
,[8] Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231
,[9] Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169
, ,[10] Gluing pseudoholomorphic curves along branched covered cylinders, I, J. Symplectic Geom. 5 (2007) 43
, ,[11] Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29
, ,[12] Proof of the Arnold chord conjecture in three dimensions, I, Math. Res. Lett. 18 (2011) 295
, ,[13] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007)
, ,[14] Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011) 1144
, ,[15] Geometric measure theory : A beginner’s guide, Elsevier (2009)
,[16] Multiple integrals in the calculus of variations, 130, Springer (1966)
,[17] Gr ⇒ SW : From pseudo-holomorphic curves to Seiberg–Witten solutions, from: "Seiberg–Witten and Gromov invariants for symplectic 4–manifolds" (editor R Wentworth), First Int. Press Lect. Ser. 2, International Press (2000) 163
,[18] SW ⇒ Gr : From the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg–Witten and Gromov invariants for symplectic 4–manifolds" (editor R Wentworth), First Int. Press Lect. Ser. 2, International Press (2000) 1
,[19] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,[20] The Seiberg–Witten equations and the Weinstein conjecture, II : More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337
,[21] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497
,[22] Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583
,[23] Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721
,[24] Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819
,[25] Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961
,[26] Gromov’s compactness of pseudo-holomorphic curves and symplectic geometry, J. Differential Geom. 28 (1988) 383
,[27] Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671
,Cité par Sources :