Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A misstatement in the key proof in our paper “An elementary construction of Anick’s fibration” led to an erroneous proof. This is repaired by a slightly longer argument.
Gray, Brayton 1 ; Theriault, Stephen 2
@article{GT_2013_17_5_a1, author = {Gray, Brayton and Theriault, Stephen}, title = {Erratum for {{\textquotedblleft}An} elementary construction of {Anick{\textquoteright}s} fibration{\textquotedblright}}, journal = {Geometry & topology}, pages = {2595--2600}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2595}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2595/} }
TY - JOUR AU - Gray, Brayton AU - Theriault, Stephen TI - Erratum for “An elementary construction of Anick’s fibration” JO - Geometry & topology PY - 2013 SP - 2595 EP - 2600 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2595/ DO - 10.2140/gt.2013.17.2595 ID - GT_2013_17_5_a1 ER -
Gray, Brayton; Theriault, Stephen. Erratum for “An elementary construction of Anick’s fibration”. Geometry & topology, Tome 17 (2013) no. 5, pp. 2595-2600. doi : 10.2140/gt.2013.17.2595. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2595/
[1] The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979) 549
, , ,[2] Cogroups and suspensions, Invent. Math. 9 (1970) 185
,[3] An elementary construction of Anick’s fibration, Geom. Topol. 14 (2010) 243
, ,[4] Properties of certain H–spaces, Quart. J. Math. Oxford Ser. 34 (1983) 201
,Cité par Sources :