Commuting tuples in reductive groups and their maximal compact subgroups
Geometry & topology, Tome 17 (2013) no. 5, pp. 2513-2593.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a reductive algebraic group and K G a maximal compact subgroup. We consider the representation spaces Hom(k,K) and Hom(k,G) with the topology induced from an embedding into Kk and Gk, respectively. The goal of this paper is to prove that Hom(k,K) is a strong deformation retract of Hom(k,G).

DOI : 10.2140/gt.2013.17.2513
Classification : 20G20, 55P99
Keywords: representations of abelian groups in Lie groups, homotopy equivalences

Pettet, Alexandra 1 ; Souto, Juan 2

1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
2 Mathematics Department, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
@article{GT_2013_17_5_a0,
     author = {Pettet, Alexandra and Souto, Juan},
     title = {Commuting tuples in reductive groups and their maximal compact subgroups},
     journal = {Geometry & topology},
     pages = {2513--2593},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2013},
     doi = {10.2140/gt.2013.17.2513},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/}
}
TY  - JOUR
AU  - Pettet, Alexandra
AU  - Souto, Juan
TI  - Commuting tuples in reductive groups and their maximal compact subgroups
JO  - Geometry & topology
PY  - 2013
SP  - 2513
EP  - 2593
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/
DO  - 10.2140/gt.2013.17.2513
ID  - GT_2013_17_5_a0
ER  - 
%0 Journal Article
%A Pettet, Alexandra
%A Souto, Juan
%T Commuting tuples in reductive groups and their maximal compact subgroups
%J Geometry & topology
%D 2013
%P 2513-2593
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/
%R 10.2140/gt.2013.17.2513
%F GT_2013_17_5_a0
Pettet, Alexandra; Souto, Juan. Commuting tuples in reductive groups and their maximal compact subgroups. Geometry & topology, Tome 17 (2013) no. 5, pp. 2513-2593. doi : 10.2140/gt.2013.17.2513. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/

[1] A Adem, F R Cohen, Commuting elements and spaces of homomorphisms, Math. Ann. 338 (2007) 587

[2] A Adem, F R Cohen, J M Gómez, Stable splittings, spaces of representations and almost commuting elements in Lie groups, Math. Proc. Cambridge Philos. Soc. 149 (2010) 455

[3] A Adem, F R Cohen, J M Gómez, Commuting elements in central products of special unitary groups, Proc. Edinb. Math. Soc. 56 (2013) 1

[4] A Adem, F R Cohen, E Torres-Giese, Commuting elements, simplicial spaces and filtrations of classifying spaces, Math. Proc. Cambridge Philos. Soc. 152 (2012) 91

[5] T J Baird, Cohomology of the space of commuting n–tuples in a compact Lie group, Algebr. Geom. Topol. 7 (2007) 737

[6] T J Baird, L C Jeffrey, P Selik, The space of commuting n–tuples in SU(2), to appear in Illinois J. Math.

[7] A Borel, Linear algebraic groups, 126, Springer (1991)

[8] A Borel, Lie groups and linear algebraic groups, I : Complex and real groups, from: "Lie groups and automorphic forms" (editors L Ji, J S Li, H W Xu, S T Yau), AMS/IP Stud. Adv. Math. 37, Amer. Math. Soc. (2006) 1

[9] A Borel, R Friedman, J W Morgan, Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002) 136

[10] M Brion, Introduction to actions of algebraic groups

[11] R Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141

[12] M C Crabb, Spaces of commuting elements in SU(2), Proc. Edinb. Math. Soc. 54 (2011) 67

[13] M Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961) 324

[14] W M Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988) 557

[15] J M Gómez, A Pettet, J Souto, On the fundamental group of Hom(Zk,G), to appear in Math. Zeitschrift.

[16] V V Gorbatsevich, A L Onishchik, Lie transformation groups, from: "Lie groups and Lie algebras, I", Encyclopaedia Math. Sci., Springer (1993) 95

[17] R M Guralnick, A note on commuting pairs of matrices, Linear and Multilinear Algebra 31 (1992) 71

[18] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[19] G Higuera, On the space of commuting orthogonal matrices (2013)

[20] K R Hofmann, Triangulation of locally semi-algebraic spaces, PhD thesis, University of Michigan (2009)

[21] L C Jeffrey, Flat connections on oriented 2–manifolds, Bull. London Math. Soc. 37 (2005) 1

[22] V G Kac, A V Smilga, Vacuum structure in supersymmetric Yang–Mills theories with any gauge group, from: "The many faces of the superworld" (editor M Shifman), World Sci. Publ. (2000) 185

[23] D Luna, Slices étales, from: "Sur les groupes algébriques", Bull. Soc. Math. France, Paris 33, Soc. Math. France (1973) 81

[24] G D Mostow, On a conjecture of Montgomery, Ann. of Math. 65 (1957) 513

[25] D Mumford, The red book of varieties and schemes, 1358, Springer (1999) 306

[26] A Parshin, I R Shafarevich, Algebraic geometry, IV : Linear algebraic groups, invariant theory, 55, Springer (1994)

[27] R W Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972) 6

[28] R W Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977) 38

[29] R W Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979) 311

[30] R W Richardson, Conjugacy classes of n–tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988) 1

[31] J P Serre, Complex semisimple Lie algebras, Springer (2001) 74

[32] J P Serre, Galois cohomology, Springer (2002) 210

[33] I R Shafarevich, Basic algebraic geometry, 1: Varieties in projective space, Springer (1994) 303

[34] J Souto, A remark on the homotopy equivalence between SUn and SLnC

[35] A Tarski, A decision method for elementary algebra and geometry, University of California Press (1951)

[36] R Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240

[37] E Torres-Giese, D Sjerve, Fundamental groups of commuting elements in Lie groups, Bull. Lond. Math. Soc. 40 (2008) 65

[38] H Whitney, Elementary structure of real algebraic varieties, Ann. of Math. 66 (1957) 545

[39] H Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965) 496

[40] E Witten, Constraints on supersymmetry breaking, Nuclear Phys. B 202 (1982) 253

[41] E Witten, Toroidal compactification without vector structure, J. High Energy Phys. (1998) 43

Cité par Sources :