Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a reductive algebraic group and a maximal compact subgroup. We consider the representation spaces and with the topology induced from an embedding into and , respectively. The goal of this paper is to prove that is a strong deformation retract of .
Pettet, Alexandra 1 ; Souto, Juan 2
@article{GT_2013_17_5_a0, author = {Pettet, Alexandra and Souto, Juan}, title = {Commuting tuples in reductive groups and their maximal compact subgroups}, journal = {Geometry & topology}, pages = {2513--2593}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2013}, doi = {10.2140/gt.2013.17.2513}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/} }
TY - JOUR AU - Pettet, Alexandra AU - Souto, Juan TI - Commuting tuples in reductive groups and their maximal compact subgroups JO - Geometry & topology PY - 2013 SP - 2513 EP - 2593 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/ DO - 10.2140/gt.2013.17.2513 ID - GT_2013_17_5_a0 ER -
%0 Journal Article %A Pettet, Alexandra %A Souto, Juan %T Commuting tuples in reductive groups and their maximal compact subgroups %J Geometry & topology %D 2013 %P 2513-2593 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/ %R 10.2140/gt.2013.17.2513 %F GT_2013_17_5_a0
Pettet, Alexandra; Souto, Juan. Commuting tuples in reductive groups and their maximal compact subgroups. Geometry & topology, Tome 17 (2013) no. 5, pp. 2513-2593. doi : 10.2140/gt.2013.17.2513. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2513/
[1] Commuting elements and spaces of homomorphisms, Math. Ann. 338 (2007) 587
, ,[2] Stable splittings, spaces of representations and almost commuting elements in Lie groups, Math. Proc. Cambridge Philos. Soc. 149 (2010) 455
, , ,[3] Commuting elements in central products of special unitary groups, Proc. Edinb. Math. Soc. 56 (2013) 1
, , ,[4] Commuting elements, simplicial spaces and filtrations of classifying spaces, Math. Proc. Cambridge Philos. Soc. 152 (2012) 91
, , ,[5] Cohomology of the space of commuting n–tuples in a compact Lie group, Algebr. Geom. Topol. 7 (2007) 737
,[6] The space of commuting n–tuples in SU(2), to appear in Illinois J. Math.
, , ,[7] Linear algebraic groups, 126, Springer (1991)
,[8] Lie groups and linear algebraic groups, I : Complex and real groups, from: "Lie groups and automorphic forms" (editors L Ji, J S Li, H W Xu, S T Yau), AMS/IP Stud. Adv. Math. 37, Amer. Math. Soc. (2006) 1
,[9] Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002) 136
, , ,[10] Introduction to actions of algebraic groups
,[11] An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141
,[12] Spaces of commuting elements in SU(2), Proc. Edinb. Math. Soc. 54 (2011) 67
,[13] On dominance and varieties of commuting matrices, Ann. of Math. 73 (1961) 324
,[14] Topological components of spaces of representations, Invent. Math. 93 (1988) 557
,[15] On the fundamental group of Hom(Zk,G), to appear in Math. Zeitschrift.
, , ,[16] Lie transformation groups, from: "Lie groups and Lie algebras, I", Encyclopaedia Math. Sci., Springer (1993) 95
, ,[17] A note on commuting pairs of matrices, Linear and Multilinear Algebra 31 (1992) 71
,[18] Algebraic topology, Cambridge Univ. Press (2002)
,[19] On the space of commuting orthogonal matrices (2013)
,[20] Triangulation of locally semi-algebraic spaces, PhD thesis, University of Michigan (2009)
,[21] Flat connections on oriented 2–manifolds, Bull. London Math. Soc. 37 (2005) 1
,[22] Vacuum structure in supersymmetric Yang–Mills theories with any gauge group, from: "The many faces of the superworld" (editor M Shifman), World Sci. Publ. (2000) 185
, ,[23] Slices étales, from: "Sur les groupes algébriques", Bull. Soc. Math. France, Paris 33, Soc. Math. France (1973) 81
,[24] On a conjecture of Montgomery, Ann. of Math. 65 (1957) 513
,[25] The red book of varieties and schemes, 1358, Springer (1999) 306
,[26] Algebraic geometry, IV : Linear algebraic groups, invariant theory, 55, Springer (1994)
, ,[27] Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972) 6
,[28] Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977) 38
,[29] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979) 311
,[30] Conjugacy classes of n–tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988) 1
,[31] Complex semisimple Lie algebras, Springer (2001) 74
,[32] Galois cohomology, Springer (2002) 210
,[33] Basic algebraic geometry, 1: Varieties in projective space, Springer (1994) 303
,[34] A remark on the homotopy equivalence between SUn and SLnC
,[35] A decision method for elementary algebra and geometry, University of California Press (1951)
,[36] Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240
,[37] Fundamental groups of commuting elements in Lie groups, Bull. Lond. Math. Soc. 40 (2008) 65
, ,[38] Elementary structure of real algebraic varieties, Ann. of Math. 66 (1957) 545
,[39] Tangents to an analytic variety, Ann. of Math. 81 (1965) 496
,[40] Constraints on supersymmetry breaking, Nuclear Phys. B 202 (1982) 253
,[41] Toroidal compactification without vector structure, J. High Energy Phys. (1998) 43
,Cité par Sources :