The orientability problem in open Gromov–Witten theory
Geometry & topology, Tome 17 (2013) no. 4, pp. 2485-2512.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an explicit formula for the holonomy of the orientation bundle of a family of real Cauchy–Riemann operators. A special case of this formula resolves the orientability question for spaces of maps from Riemann surfaces with Lagrangian boundary condition. As a corollary, we show that the local system of orientations on the moduli space of J–holomorphic maps from a bordered Riemann surface to a symplectic manifold is isomorphic to the pullback of a local system defined on the product of the Lagrangian and its free loop space. As another corollary, we show that certain natural bundles over these moduli spaces have the same local systems of orientations as the moduli spaces themselves (this is a prerequisite for integrating the Euler classes of these bundles). We will apply these conclusions in future papers to construct and compute open Gromov–Witten invariants in a number of settings.

DOI : 10.2140/gt.2013.17.2485
Classification : 53D45, 57R17, 14N35
Keywords: orientability, moduli spaces, open Gromov–Witten theory

Georgieva, Penka 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
@article{GT_2013_17_4_a12,
     author = {Georgieva, Penka},
     title = {The orientability problem in open {Gromov{\textendash}Witten} theory},
     journal = {Geometry & topology},
     pages = {2485--2512},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2485},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2485/}
}
TY  - JOUR
AU  - Georgieva, Penka
TI  - The orientability problem in open Gromov–Witten theory
JO  - Geometry & topology
PY  - 2013
SP  - 2485
EP  - 2512
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2485/
DO  - 10.2140/gt.2013.17.2485
ID  - GT_2013_17_4_a12
ER  - 
%0 Journal Article
%A Georgieva, Penka
%T The orientability problem in open Gromov–Witten theory
%J Geometry & topology
%D 2013
%P 2485-2512
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2485/
%R 10.2140/gt.2013.17.2485
%F GT_2013_17_4_a12
Georgieva, Penka. The orientability problem in open Gromov–Witten theory. Geometry & topology, Tome 17 (2013) no. 4, pp. 2485-2512. doi : 10.2140/gt.2013.17.2485. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2485/

[1] G Bini, C De Concini, M Polito, C Procesi, On the work of Givental relative to mirror symmetry, Scuola Normale Superiore (1998)

[2] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453

[3] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2011)

[4] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: Anomaly and obstruction, AMS/IP Studies Adv. Math. 46, Amer. Math. Soc. (2009)

[5] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[6] S Ivashkovich, V Shevchishin, Holomorphic structure on the space of Riemann surfaces with marked boundary, Tr. Mat. Inst. Steklova 235 (2001) 98

[7] J Li, A Zinger, On the genus-one Gromov–Witten invariants of complete intersections, J. Differential Geom. 82 (2009) 641

[8] E Looijenga, Smooth Deligne–Mumford compactifications by means of Prym level structures, J. Algebraic Geom. 3 (1994) 283

[9] G Massuyeau, A short introduction to mapping class groups (2009)

[10] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ. 52, Amer. Math. Soc. (2004)

[11] R Pandharipande, J Solomon, J Walcher, Disk enumeration on the quintic $3$–fold, J. Amer. Math. Soc. 21 (2008) 1169

[12] A Popa, A Zinger, Mirror symmetry for closed, open, and unoriented Gromov–Witten invariants

[13] P Seidel, Fukaya categories and Picard–Lefschetz theory, Europ. Math. Soc. (2008)

[14] V De Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, University of Oxford (1998)

[15] J P Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, PhD thesis, Massachusetts Institute of Technology (2006)

[16] N E Steenrod, Homology with local coefficients, Ann. of Math. 44 (1943) 610

[17] J Walcher, Evidence for tadpole cancellation in the topological string, Commun. Number Theory Phys. 3 (2009) 111

[18] K Wehrhiem, W C, Orientations for pseudoholomorphic quilts, preprint (2007)

[19] J Y Welschinger, Enumerative invariants of strongly semipositive real symplectic six-manifolds

Cité par Sources :