Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We generalize to a wider class of hyperbolic groups a construction by Misha Kapovich yielding convex cocompact representations into real hyperbolic space.
Desgroseilliers, Marc 1 ; Haglund, Frédéric 2
@article{GT_2013_17_4_a11, author = {Desgroseilliers, Marc and Haglund, Fr\'ed\'eric}, title = {On some convex cocompact groups in real hyperbolic space}, journal = {Geometry & topology}, pages = {2431--2484}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2013}, doi = {10.2140/gt.2013.17.2431}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/} }
TY - JOUR AU - Desgroseilliers, Marc AU - Haglund, Frédéric TI - On some convex cocompact groups in real hyperbolic space JO - Geometry & topology PY - 2013 SP - 2431 EP - 2484 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/ DO - 10.2140/gt.2013.17.2431 ID - GT_2013_17_4_a11 ER -
%0 Journal Article %A Desgroseilliers, Marc %A Haglund, Frédéric %T On some convex cocompact groups in real hyperbolic space %J Geometry & topology %D 2013 %P 2431-2484 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/ %R 10.2140/gt.2013.17.2431 %F GT_2013_17_4_a11
Desgroseilliers, Marc; Haglund, Frédéric. On some convex cocompact groups in real hyperbolic space. Geometry & topology, Tome 17 (2013) no. 4, pp. 2431-2484. doi : 10.2140/gt.2013.17.2431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/
[1] The virtual Haken conjecture
, , ,[2] Adhérence de Zariski des groupes de Coxeter, Compos. Math. 140 (2004) 1357
, ,[3] Éléments de mathématique XXXIV: Groupes et algèbres de Lie, Actualités Scientifiques et Industrielles 1337, Hermann (1968) 288
,[4] Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1097
,[5] Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1988) 63
, , ,[6] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[7] From wall spaces to $\mathrm CAT(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005) 875
, ,[8] Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293
,[9] The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv. 77 (2002) 746
, ,[10] Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier (Grenoble) 24 (1974) 171
, ,[11] A series of word-hyperbolic Coxeter groups
, ,[12] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)
, , ,[13] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[14] Les polyèdres de Gromov, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 603
,[15] Simplicité de groupes d'automorphismes d'espaces à courbure négative, from: "The Epstein birthday schrift" (editors I Rivin, C P Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 181
, ,[16] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551
, ,[17] Coxeter groups are virtually special, Adv. Math. 224 (2010) 1890
, ,[18] Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)
,[19] Representations of polygons of finite groups, Geom. Topol. 9 (2005) 1915
,[20] Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)
,[21] Some nonsymmetric manifolds, from: "Differential geometry and its applications" (editors J Szenthe, L Tamássy), Colloq. Math. Soc. János Bolyai 56, North-Holland (1992) 535
,[22] Coxeter groups act on $\mathrm{CAT}(0)$ cube complexes, J. Group Theory 6 (2003) 399
, ,[23] Cubulating spaces with walls, Algebr. Geom. Topol. 4 (2004) 297
,[24] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994)
,[25] Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072
,[26] The residual finiteness of negatively curved polygons of finite groups, Invent. Math. 149 (2002) 579
,[27] Subgroup separability of the figure 8 knot group, Topology 45 (2006) 421
,Cité par Sources :