On some convex cocompact groups in real hyperbolic space
Geometry & topology, Tome 17 (2013) no. 4, pp. 2431-2484.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We generalize to a wider class of hyperbolic groups a construction by Misha Kapovich yielding convex cocompact representations into real hyperbolic space.

DOI : 10.2140/gt.2013.17.2431
Classification : 20E26, 20F67, 22E40, 51F15, 57M20, 20F55, 20F65, 20H10, 53C23
Keywords: $\mathrm{CAT}(0)$ polygonal complexes, Coxeter groups, separable subgroups, convex cocompact representations, real hyperbolic spaces

Desgroseilliers, Marc 1 ; Haglund, Frédéric 2

1 Laboratoire de théorie de l’information, École Polytechnique Fédérale de Lausanne, INR 140 (Bâtiment INR), Station 14, CH-1015 Lausanne, Switzerland
2 Laboratoire de Mathématiques, Université de Paris XI (Paris-Sud), 91405 Orsay, France
@article{GT_2013_17_4_a11,
     author = {Desgroseilliers, Marc and Haglund, Fr\'ed\'eric},
     title = {On some convex cocompact groups in real hyperbolic space},
     journal = {Geometry & topology},
     pages = {2431--2484},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2431},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/}
}
TY  - JOUR
AU  - Desgroseilliers, Marc
AU  - Haglund, Frédéric
TI  - On some convex cocompact groups in real hyperbolic space
JO  - Geometry & topology
PY  - 2013
SP  - 2431
EP  - 2484
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/
DO  - 10.2140/gt.2013.17.2431
ID  - GT_2013_17_4_a11
ER  - 
%0 Journal Article
%A Desgroseilliers, Marc
%A Haglund, Frédéric
%T On some convex cocompact groups in real hyperbolic space
%J Geometry & topology
%D 2013
%P 2431-2484
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/
%R 10.2140/gt.2013.17.2431
%F GT_2013_17_4_a11
Desgroseilliers, Marc; Haglund, Frédéric. On some convex cocompact groups in real hyperbolic space. Geometry & topology, Tome 17 (2013) no. 4, pp. 2431-2484. doi : 10.2140/gt.2013.17.2431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2431/

[1] I Agol, D Groves, J F Manning, The virtual Haken conjecture

[2] Y Benoist, P De La Harpe, Adhérence de Zariski des groupes de Coxeter, Compos. Math. 140 (2004) 1357

[3] N Bourbaki, Éléments de mathématique XXXIV: Groupes et algèbres de Lie, Actualités Scientifiques et Industrielles 1337, Hermann (1968) 288

[4] M Bourdon, Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1097

[5] M Bozejko, T Januszkiewicz, R J Spatzier, Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1988) 63

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[7] I Chatterji, G Niblo, From wall spaces to $\mathrm CAT(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005) 875

[8] M W Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293

[9] M W Davis, J Meier, The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv. 77 (2002) 746

[10] J Faraut, K Harzallah, Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier (Grenoble) 24 (1974) 171

[11] A Felikson, P Tumarkin, A series of word-hyperbolic Coxeter groups

[12] É Ghys, P De La Harpe, Editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[13] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[14] F Haglund, Les polyèdres de Gromov, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 603

[15] F Haglund, F Paulin, Simplicité de groupes d'automorphismes d'espaces à courbure négative, from: "The Epstein birthday schrift" (editors I Rivin, C P Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 181

[16] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551

[17] F Haglund, D T Wise, Coxeter groups are virtually special, Adv. Math. 224 (2010) 1890

[18] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[19] M Kapovich, Representations of polygons of finite groups, Geom. Topol. 9 (2005) 1915

[20] G Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)

[21] G Moussong, Some nonsymmetric manifolds, from: "Differential geometry and its applications" (editors J Szenthe, L Tamássy), Colloq. Math. Soc. János Bolyai 56, North-Holland (1992) 535

[22] G A Niblo, L D Reeves, Coxeter groups act on $\mathrm{CAT}(0)$ cube complexes, J. Group Theory 6 (2003) 399

[23] B Nica, Cubulating spaces with walls, Algebr. Geom. Topol. 4 (2004) 297

[24] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994)

[25] È B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072

[26] D T Wise, The residual finiteness of negatively curved polygons of finite groups, Invent. Math. 149 (2002) 579

[27] D T Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006) 421

Cité par Sources :