Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In [Int. Math. Res. Not. 16 (2010) 3101–3133] the authors introduced a parabolic flow of pluriclosed metrics. Here we give improved regularity results for solutions to this equation. Furthermore, we exhibit this equation as the gradient flow of the lowest eigenvalue of a certain Schrödinger operator, and show the existence of an expanding entropy functional for this flow. Finally, we motivate a conjectural picture of the optimal regularity results for this flow, and discuss some of the consequences.
Streets, Jeffrey 1 ; Tian, Gang 2
@article{GT_2013_17_4_a10, author = {Streets, Jeffrey and Tian, Gang}, title = {Regularity results for pluriclosed flow}, journal = {Geometry & topology}, pages = {2389--2429}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2013}, doi = {10.2140/gt.2013.17.2389}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2389/} }
Streets, Jeffrey; Tian, Gang. Regularity results for pluriclosed flow. Geometry & topology, Tome 17 (2013) no. 4, pp. 2389-2429. doi : 10.2140/gt.2013.17.2389. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2389/
[1] Vanishing theorems on Hermitian manifolds, Differential Geom. Appl. 14 (2001) 251
, ,[2] Compact complex surfaces, Ergeb. Math. Grenzgeb. 4, Springer (2004)
, , , ,[3] Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946) 776
,[4] On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999) 287
,[5] A Nakai–Moishezon criterion for non-Kähler surfaces, Ann. Inst. Fourier (Grenoble) 50 (2000) 1533
,[6] On Kähler manifolds with vanishing canonical class, from: "Algebraic geometry and topology. A symposium in honor of S Lefschetz", Princeton Univ. Press (1957) 78
,[7] Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327
, , ,[8] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15
, , ,[9] Class $\mathrm VII_0$ surfaces with $b_2$ curves, Tohoku Math. J. 55 (2003) 283
, , ,[10] On surfaces of class $\mathrm{VII}_{0}$ with curves, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980) 275
,[11] Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005) 49
, , ,[12] Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977)
,[13] Complex Monge–Ampere equations on Hermitian manifolds
, ,[14] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255
,[15] Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999) 695
,[16] Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001) 1089
, ,[17] On holomorphic sections of certain Hermitian vector bundles, Math. Ann. 189 (1970) 1
, ,[18] Le cône kählérien d'une surface, J. Math. Pures Appl. 78 (1999) 249
,[19] Second order parabolic differential equations, World Scientific Publishing Co. (1996)
,[20] On surfaces of class $\mathrm{VII}_0$ with curves, Invent. Math. 78 (1984) 393
,[21] A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B 739 (2006) 441
, , ,[22] On the entropy formula for Ricci flow and its geometric applications
,[23] Multiplier ideal sheaves and the Kähler–Ricci flow, Comm. Anal. Geom. 15 (2007) 613
, , ,[24] String theory, I: an introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press (1998)
,[25] Curvature tensor under the Ricci flow, Amer. J. Math. 127 (2005) 1315
,[26] Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys. 58 (2008) 900
,[27] A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. 2010 (2010) 3101
, ,[28] Hermitian curvature flow, J. Eur. Math. Soc. 13 (2011) 601
, ,[29] Donaldson theory on non-Kählerian surfaces and class VII surfaces with $b_2=1$, Invent. Math. 162 (2005) 493
,[30] The pseudo-effective cone of a non-Kählerian surface and applications, Math. Ann. 335 (2006) 965
,[31] New results and problems on Kähler–Ricci flow, from: "Géométrie différentielle, physique mathématique, mathématiques et société, II", Astérisque 322, Soc. Math. France (2008) 71
,[32] On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179
, ,[33] The Calabi–Yau equation on almost-Kähler four-manifolds, J. Differential Geom. 76 (2007) 317
,Cité par Sources :