Combinatorial group theory and the homotopy groups of finite complexes
Geometry & topology, Tome 17 (2013) no. 1, pp. 235-272.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For n > k 3, we construct a finitely generated group with explicit generators and relations obtained from braid groups, whose center is exactly πn(Sk). Our methods can be extended to obtain combinatorial descriptions of homotopy groups of finite complexes. As an example, we also give a combinatorial description of the homotopy groups of Moore spaces.

DOI : 10.2140/gt.2013.17.235
Classification : 55Q40, 55Q52, 18G30, 20E06, 20F36, 55U10, 57M07
Keywords: homotopy groups, braid groups, free product with amalgamation, simplicial groups, spheres, Moore spaces, Brunnian words

Mikhailov, Roman 1 ; Wu, Jie 2

1 St Petersburg Department of Steklov Mathematical Institute, and, Chebyshev Laboratory, St Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia
2 Department of Mathematics, National University of Singapore, 2Block S17-06-02, 10 Lower Kent Ridge Road, Singapore 119076, Singapore
@article{GT_2013_17_1_a5,
     author = {Mikhailov, Roman and Wu, Jie},
     title = {Combinatorial group theory and the homotopy groups of finite complexes},
     journal = {Geometry & topology},
     pages = {235--272},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.235},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/}
}
TY  - JOUR
AU  - Mikhailov, Roman
AU  - Wu, Jie
TI  - Combinatorial group theory and the homotopy groups of finite complexes
JO  - Geometry & topology
PY  - 2013
SP  - 235
EP  - 272
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/
DO  - 10.2140/gt.2013.17.235
ID  - GT_2013_17_1_a5
ER  - 
%0 Journal Article
%A Mikhailov, Roman
%A Wu, Jie
%T Combinatorial group theory and the homotopy groups of finite complexes
%J Geometry & topology
%D 2013
%P 235-272
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/
%R 10.2140/gt.2013.17.235
%F GT_2013_17_1_a5
Mikhailov, Roman; Wu, Jie. Combinatorial group theory and the homotopy groups of finite complexes. Geometry & topology, Tome 17 (2013) no. 1, pp. 235-272. doi : 10.2140/gt.2013.17.235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/

[1] V G Bardakov, R Mikhailov, V V Vershinin, J Wu, Brunnian braids on surfaces, Algebr. Geom. Topol. 12 (2012) 1607

[2] G Baumslag, Finitely presented groups, from: "Proc. Internat. Conf. Theory of Groups" (editors L G Kovacs, B H Neumann), Gordon and Breach (1967) 37

[3] A J Berrick, F R Cohen, Y L Wong, J Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006) 265

[4] A K Bousfield, E B Curtis, D M Kan, D G Quillen, D L Rector, J W Schlesinger, The mod − p lower central series and the Adams spectral sequence, Topology 5 (1966) 331

[5] R Brown, J L Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311

[6] W L Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948) 654

[7] F R Cohen, J Wu, On braid groups, free groups, and the loop space of the 2-sphere, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 93

[8] F R Cohen, J Wu, Artin’s braid groups, free groups, and the loop space of the 2-sphere, Q. J. Math. 62 (2011) 891

[9] D Conduché, Modules croisés généralisés de longueur 2, from: "Proceedings of the Luminy conference on algebraic K-theory" (editors E M Friedlander, M Karoubi) (1984) 155

[10] E B Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971) 107

[11] G Ellis, R Mikhailov, A colimit of classifying spaces, Adv. Math. 223 (2010) 2097

[12] A O Houcine, Embeddings in finitely presented groups which preserve the center, J. Algebra 307 (2007) 1

[13] D M Kan, A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958) 282

[14] D M Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958) 38

[15] D M Kan, W P Thurston, Every connected space has the homology of a K(π,1), Topology 15 (1976) 253

[16] J Y Li, J Wu, On symmetric commutator subgroups, braids, links and homotopy groups, Trans. Amer. Math. Soc. 363 (2011) 3829

[17] W Magnus, A Karrass, D Solitar, Combinatorial group theory : presentations of groups in terms of generators and relations, 13, Interscience Publishers (1966)

[18] R Mikhailov, I B S Passi, J Wu, Symmetric ideals in group rings and simplicial homotopy, J. Pure Appl. Algebra 215 (2011) 1085

[19] J Milnor, On the construction F[K], from: "Algebraic topology—a student guide" (editor J F Adams), London Mathematical Society Lecture Note Series 4, Cambridge Univ. Press (1972) 119

[20] D G Quillen, Homotopical algebra, 43, Springer (1967)

[21] J H C Whitehead, On the asphericity of regions in a 3–sphere, Fund. Math. 32 (1939) 149

[22] J Wu, On combinatorial descriptions of homotopy groups and the homotopy theory of mod 2 Moore spaces, PhD thesis, University of Rochester (1995)

[23] J Wu, On fibrewise simplicial monoids and Milnor–Carlsson’s constructions, Topology 37 (1998) 1113

[24] J Wu, Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc. 130 (2001) 489

[25] J Wu, A braided simplicial group, Proc. London Math. Soc. 84 (2002) 645

[26] H Zhao, X Wang, Combinatorial description of the homotopy groups of wedge of spheres, Proc. Amer. Math. Soc. 137 (2009) 371

Cité par Sources :