Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For , we construct a finitely generated group with explicit generators and relations obtained from braid groups, whose center is exactly . Our methods can be extended to obtain combinatorial descriptions of homotopy groups of finite complexes. As an example, we also give a combinatorial description of the homotopy groups of Moore spaces.
Mikhailov, Roman 1 ; Wu, Jie 2
@article{GT_2013_17_1_a5, author = {Mikhailov, Roman and Wu, Jie}, title = {Combinatorial group theory and the homotopy groups of finite complexes}, journal = {Geometry & topology}, pages = {235--272}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.235}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/} }
TY - JOUR AU - Mikhailov, Roman AU - Wu, Jie TI - Combinatorial group theory and the homotopy groups of finite complexes JO - Geometry & topology PY - 2013 SP - 235 EP - 272 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/ DO - 10.2140/gt.2013.17.235 ID - GT_2013_17_1_a5 ER -
Mikhailov, Roman; Wu, Jie. Combinatorial group theory and the homotopy groups of finite complexes. Geometry & topology, Tome 17 (2013) no. 1, pp. 235-272. doi : 10.2140/gt.2013.17.235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.235/
[1] Brunnian braids on surfaces, Algebr. Geom. Topol. 12 (2012) 1607
, , , ,[2] Finitely presented groups, from: "Proc. Internat. Conf. Theory of Groups" (editors L G Kovacs, B H Neumann), Gordon and Breach (1967) 37
,[3] Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006) 265
, , , ,[4] The mod − p lower central series and the Adams spectral sequence, Topology 5 (1966) 331
, , , , , ,[5] Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311
, ,[6] On the algebraical braid group, Ann. of Math. (2) 49 (1948) 654
,[7] On braid groups, free groups, and the loop space of the 2-sphere, from: "Categorical decomposition techniques in algebraic topology" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 93
, ,[8] Artin’s braid groups, free groups, and the loop space of the 2-sphere, Q. J. Math. 62 (2011) 891
, ,[9] Modules croisés généralisés de longueur 2, from: "Proceedings of the Luminy conference on algebraic K-theory" (editors E M Friedlander, M Karoubi) (1984) 155
,[10] Simplicial homotopy theory, Advances in Math. 6 (1971) 107
,[11] A colimit of classifying spaces, Adv. Math. 223 (2010) 2097
, ,[12] Embeddings in finitely presented groups which preserve the center, J. Algebra 307 (2007) 1
,[13] A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958) 282
,[14] On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958) 38
,[15] Every connected space has the homology of a K(π,1), Topology 15 (1976) 253
, ,[16] On symmetric commutator subgroups, braids, links and homotopy groups, Trans. Amer. Math. Soc. 363 (2011) 3829
, ,[17] Combinatorial group theory : presentations of groups in terms of generators and relations, 13, Interscience Publishers (1966)
, , ,[18] Symmetric ideals in group rings and simplicial homotopy, J. Pure Appl. Algebra 215 (2011) 1085
, , ,[19] On the construction F[K], from: "Algebraic topology—a student guide" (editor J F Adams), London Mathematical Society Lecture Note Series 4, Cambridge Univ. Press (1972) 119
,[20] Homotopical algebra, 43, Springer (1967)
,[21] On the asphericity of regions in a 3–sphere, Fund. Math. 32 (1939) 149
,[22] On combinatorial descriptions of homotopy groups and the homotopy theory of mod 2 Moore spaces, PhD thesis, University of Rochester (1995)
,[23] On fibrewise simplicial monoids and Milnor–Carlsson’s constructions, Topology 37 (1998) 1113
,[24] Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc. 130 (2001) 489
,[25] A braided simplicial group, Proc. London Math. Soc. 84 (2002) 645
,[26] Combinatorial description of the homotopy groups of wedge of spheres, Proc. Amer. Math. Soc. 137 (2009) 371
, ,Cité par Sources :