Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this article we introduce a method to construct –instantons on –manifolds arising from Joyce’s generalised Kummer construction. The method is based on gluing ASD instantons over ALE spaces to flat bundles on –orbifolds of the form . We use this construction to produce non-trivial examples of –instantons.
Walpuski, Thomas 1
@article{GT_2013_17_4_a9, author = {Walpuski, Thomas}, title = {G2{\textendash}instantons on generalised {Kummer} constructions}, journal = {Geometry & topology}, pages = {2345--2388}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2013}, doi = {10.2140/gt.2013.17.2345}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2345/} }
Walpuski, Thomas. G2–instantons on generalised Kummer constructions. Geometry & topology, Tome 17 (2013) no. 4, pp. 2345-2388. doi : 10.2140/gt.2013.17.2345. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2345/
[1] Orbifolds and stringy topology, Cambridge Tracts in Mathematics 171, Cambridge Univ. Press (2007)
, , ,[2] Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279
,[3] On the construction of solutions to the Yang–Mills equations in higher dimensions
,[4] Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000) 214
, , ,[5] First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B 214 (1983) 452
, , , ,[6] The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Univ. Press (1990)
, ,[7] Gauge theory in higher dimensions II, from: "Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, International Press (2011) 1
, ,[8] Gauge theory in higher dimensions, from: "The Geometric Universe" (editors S A Huggett, L J Mason, K P Tod, S Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31
, ,[9] A Kato–Yau inequality and decay estimate for eigenspinors, J. Geom. Anal. 11 (2001) 469
,[10] Riemannian manifolds with structure group $G_{2}$, Ann. Mat. Pura Appl. 132 (1982) 19
, ,[11] Instantons and four-manifolds, Mathematical Sciences Research Institute Publications 1, Springer (1991)
, ,[12] Einstein–Hermitian connections on hyper–Kähler quotients, J. Math. Soc. Japan 44 (1992) 43
, ,[13] Calibrated geometries, Acta Math. 148 (1982) 47
, ,[14] Gauge theory, calibrated geometry and harmonic spinors, J. Lond. Math. Soc. 86 (2012) 482
,[15] Hyper–Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987) 535
, , , ,[16] Compact Riemannian $7$–manifolds with holonomy $G_2$ I, J. Differential Geom. 43 (1996) 291
,[17] Compact Riemannian 7–manifolds with holonomy $G_2$ II, J. Differential Geom. 43 (1996) 329
,[18] Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford Univ. Press (2000)
,[19] $L^p$–theory of elliptic differential operators on manifolds of bounded geometry, Acta Appl. Math. 23 (1991) 223
,[20] Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125
,[21] The construction of ALE spaces as hyper–Kähler quotients, J. Differential Geom. 29 (1989) 665
,[22] A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685
,[23] Instanton invariants and flat connections on the Kummer surface, Duke Math. J. 64 (1991) 229
,[24] Yang–Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990) 263
, ,[25] $\mathrm{Spin}(7)$ instantons, DPhil thesis, University of Oxford (1998)
,[26] Graphs, singularities, and finite groups, from: "The Santa Cruz Conference on Finite Groups" (editors B Cooperstein, G Mason), Proc. Sympos. Pure Math. 37, Amer. Math. Soc. (1980) 183
,[27] Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math. 102 (1990) 267
,[28] The null spaces of elliptic partial differential operators in $\mathbb{R}^{n}$, J. Math. Anal. Appl. 42 (1973) 271
, ,[29] From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differential Geom. 64 (2003) 359
, ,[30] $\mathrm{G}_2$–instantons on Kovalev manifolds
,[31] $\mathrm{G}_2$–instantons on Kovalev manifolds II
,[32] Notes on the octonions
, ,[33] A singularity removal theorem for Yang–Mills fields in higher dimensions, J. Amer. Math. Soc. 17 (2004) 557
, ,[34] Gauge theory and calibrated geometry I, Ann. of Math. 151 (2000) 193
,[35] Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31
,[36] Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982) 11
,Cité par Sources :