Local smoothing results for the Ricci flow in dimensions two and three
Geometry & topology, Tome 17 (2013) no. 4, pp. 2263-2287.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present local estimates for solutions to the Ricci flow, without the assumption that the solution has bounded curvature. These estimates lead to a generalisation of one of the pseudolocality results of G Perelman in dimension two.

DOI : 10.2140/gt.2013.17.2263
Classification : 35B65, 53C44
Keywords: Ricci flow, local estimates, smoothing properties

Simon, Miles 1

1 Institut für Analysis und Numerik (IAN), Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
@article{GT_2013_17_4_a7,
     author = {Simon, Miles},
     title = {Local smoothing results for the {Ricci} flow in dimensions two and three},
     journal = {Geometry & topology},
     pages = {2263--2287},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2263},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2263/}
}
TY  - JOUR
AU  - Simon, Miles
TI  - Local smoothing results for the Ricci flow in dimensions two and three
JO  - Geometry & topology
PY  - 2013
SP  - 2263
EP  - 2287
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2263/
DO  - 10.2140/gt.2013.17.2263
ID  - GT_2013_17_4_a7
ER  - 
%0 Journal Article
%A Simon, Miles
%T Local smoothing results for the Ricci flow in dimensions two and three
%J Geometry & topology
%D 2013
%P 2263-2287
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2263/
%R 10.2140/gt.2013.17.2263
%F GT_2013_17_4_a7
Simon, Miles. Local smoothing results for the Ricci flow in dimensions two and three. Geometry & topology, Tome 17 (2013) no. 4, pp. 2263-2287. doi : 10.2140/gt.2013.17.2263. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2263/

[1] E Calabi, An extension of E Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45

[2] H D Cao, S C Chu, B Chow, S T Yau, Collected papers on Ricci flow, Series in Geometry and Topology 37, International Press (2003)

[3] A Chau, L F Tam, C Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math. 63 (2011) 55

[4] B L Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009) 363

[5] B L Chen, G Xu, Z Zhang, Local pinching estimates in $3$–dim Ricci flow

[6] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow: techniques and applications, Part III: Geometric-analytic aspects, Math. Surveys and Monographs 163, Amer. Math. Soc. (2010)

[7] R S Hamilton, Four manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153

[8] R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545

[9] R S Hamilton, The formation of singularities in the Ricci flow, from: "Surveys in differential geometry" (editor S T Yau), Int. Press, Cambridge, MA (1995) 7

[10] B Kleiner, J Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008) 2587

[11] P Lu, A local curvature bound in Ricci flow, Geom. Topol. 14 (2010) 1095

[12] G Perelman, The entropy formula for the Ricci flow and its geometric applications (2002)

[13] F Schulze, M Simon, Expanding solitons with non-negative curvature operator coming out of cones

[14] M Simon, Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math. 630 (2009) 177

[15] M Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59

[16] Y Wang, Pseudolocality of the Ricci flow under integral bound of curvature, J. Geom. Anal. 23 (2013) 1

Cité par Sources :