Discrete primitive-stable representations with large rank surplus
Geometry & topology, Tome 17 (2013) no. 4, pp. 2223-2261.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a sequence of primitive-stable representations of free groups into PSL2() whose ranks go to infinity, but whose images are discrete with quotient manifolds that converge geometrically to a knot complement. In particular this implies that the rank and geometry of the image of a primitive-stable representation imposes no constraint on the rank of the domain.

DOI : 10.2140/gt.2013.17.2223
Classification : 57M60, 57M50, 57M05
Keywords: primitive stable, Whitehead graph, representation, rank, Dehn filling

Minsky, Yair N 1 ; Moriah, Yoav 2

1 Department of Mathematics, Yale University, PO Box 208283, New Haven, CT 06520, USA
2 Department of Mathematics, Technion, 32000 Haifa, Israel
@article{GT_2013_17_4_a6,
     author = {Minsky, Yair N and Moriah, Yoav},
     title = {Discrete primitive-stable representations with large rank surplus},
     journal = {Geometry & topology},
     pages = {2223--2261},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2223},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2223/}
}
TY  - JOUR
AU  - Minsky, Yair N
AU  - Moriah, Yoav
TI  - Discrete primitive-stable representations with large rank surplus
JO  - Geometry & topology
PY  - 2013
SP  - 2223
EP  - 2261
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2223/
DO  - 10.2140/gt.2013.17.2223
ID  - GT_2013_17_4_a6
ER  - 
%0 Journal Article
%A Minsky, Yair N
%A Moriah, Yoav
%T Discrete primitive-stable representations with large rank surplus
%J Geometry & topology
%D 2013
%P 2223-2261
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2223/
%R 10.2140/gt.2013.17.2223
%F GT_2013_17_4_a6
Minsky, Yair N; Moriah, Yoav. Discrete primitive-stable representations with large rank surplus. Geometry & topology, Tome 17 (2013) no. 4, pp. 2223-2261. doi : 10.2140/gt.2013.17.2223. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2223/

[1] I Agol, Tameness of hyperbolic $3$–manifolds

[2] F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. 124 (1986) 71

[3] F Bonahon, Geometric structures on $3$–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 93

[4] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[5] R D Canary, A covering theorem for hyperbolic $3$–manifolds and its applications, Topology 35 (1996) 751

[6] R D Canary, C J Leininger, Kleinian groups with discrete length spectrum, Bull. Lond. Math. Soc. 39 (2007) 189

[7] J Hempel, $3$–manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976)

[8] W H Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, Amer. Math. Soc. (1980)

[9] W H Jaco, P B Shalen, Seifert fibered spaces in $3$–manifolds, Mem. Amer. Math. Soc. 21 (1979)

[10] K Johannson, Homotopy equivalences of $3$–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)

[11] R S Kulkarni, P B Shalen, On Ahlfors' finiteness theorem, Adv. Math. 76 (1989) 155

[12] A Lubotzky, Dynamics of $\mathrm{Aut}(F_n)$ actions on group presentations and representations, from: "Geometry, rigidity, and group actions", Univ. Chicago Press (2011) 609

[13] M Lustig, Y Moriah, $3$–manifolds with irreducible Heegaard splittings of high genus, Topology 39 (2000) 589

[14] D Mccullough, Compact submanifolds of $3$–manifolds with boundary, Quart. J. Math. Oxford Ser. 37 (1986) 299

[15] Y N Minsky, On dynamics of $\mathrm{Out}(F_n)$ on $\mathrm{PSL}_2({\mathbb{C}})$ characters, Israel J. Math. 193 (2013) 47

[16] Y Moriah, J Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998) 1089

[17] G P Scott, Compact submanifolds of $3$–manifolds, J. London Math. Soc. 7 (1973) 246

[18] W Thurston, Hyperbolic geometry and $3$–manifolds, from: "Low-dimensional topology" (editors R Brown, T L Thickstun), London Math. Soc. Lecture Note Ser. 48, Cambridge Univ. Press (1982) 9

[19] J H C Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. S2-41 (1936) 48

[20] J H C Whitehead, On equivalent sets of elements in a free group, Ann. of Math. 37 (1936) 782

Cité par Sources :