Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for a wide class of manifold pairs with , every –injective map factorises up to homotopy as a finite cover of an embedding. This result, in the spirit of Waldhausen’s torus theorem, is derived using Cappell’s surgery methods from a new algebraic splitting theorem for Poincaré duality groups. As an application we derive a new obstruction to the existence of –injective maps.
Kar, Aditi 1 ; Niblo, Graham 2
@article{GT_2013_17_4_a5, author = {Kar, Aditi and Niblo, Graham}, title = {A topological splitting theorem for {Poincar\'e} duality groups and high-dimensional manifolds}, journal = {Geometry & topology}, pages = {2203--2221}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2013}, doi = {10.2140/gt.2013.17.2203}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/} }
TY - JOUR AU - Kar, Aditi AU - Niblo, Graham TI - A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds JO - Geometry & topology PY - 2013 SP - 2203 EP - 2221 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/ DO - 10.2140/gt.2013.17.2203 ID - GT_2013_17_4_a5 ER -
%0 Journal Article %A Kar, Aditi %A Niblo, Graham %T A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds %J Geometry & topology %D 2013 %P 2203-2221 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/ %R 10.2140/gt.2013.17.2203 %F GT_2013_17_4_a5
Kar, Aditi; Niblo, Graham. A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds. Geometry & topology, Tome 17 (2013) no. 4, pp. 2203-2221. doi : 10.2140/gt.2013.17.2203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/
[1] The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631
, ,[2] Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London (1976)
,[3] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[4] A splitting theorem for manifolds, Invent. Math. 33 (1976) 69
,[5] The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series 32, Princeton Univ. Press (2008)
,[6] Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, Cambridge Univ. Press (1989)
, ,[7] Permutation groups, Graduate Texts in Mathematics 163, Springer (1996)
, ,[8] JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25
, ,[9] The algebraic torus theorem, Invent. Math. 140 (2000) 605
, ,[10] On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. 65 (1957) 517
, ,[11] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127
, ,[12] A group-theoretic proof of the torus theorem, from: "Geometric group theory, Vol. 1" (editors G A Niblo, M Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 138
,[13] Splittings of Poincaré duality groups III, J. London Math. Soc. 39 (1989) 271
, ,[14] A note on the characteristic classes of non-positively curved manifolds, Expo. Math. 25 (2007) 21
, ,[15] Geometric superrigidity, Invent. Math. 113 (1993) 57
, , ,[16] The singularity obstruction for group splittings, Topology Appl. 119 (2002) 17
,[17] Groups acting on $\mathrm{CAT}(0)$ cube complexes, Geom. Topol. 1 (1997) 1
, ,[18] On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1
,[19] A non–Haken hyperbolic 3–manifold covered by a surface bundle, Pacific J. Math. 167 (1995) 163
,[20] Codimension 1 subgroups and splittings of groups, J. Algebra 189 (1997) 377
,[21] Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179
,[22] Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003)
, ,[23] A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977) 317
,[24] On the determination of some bounded 3–manifolds by their fundamental groups alone, from: "Proc. Internat. Sympos. on Topology and its Applications" (editor D R Kurepa) (1969) 331
,Cité par Sources :