A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds
Geometry & topology, Tome 17 (2013) no. 4, pp. 2203-2221.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for a wide class of manifold pairs N,M with dim(M) = dim(N) + 1, every π1–injective map f : N M factorises up to homotopy as a finite cover of an embedding. This result, in the spirit of Waldhausen’s torus theorem, is derived using Cappell’s surgery methods from a new algebraic splitting theorem for Poincaré duality groups. As an application we derive a new obstruction to the existence of π1–injective maps.

DOI : 10.2140/gt.2013.17.2203
Keywords: Torus theorem, Poincaré duality group, Bass–Serre theory, Kazhdan's property (T), Borel conjecture, surgery, Cappell's splitting theorem, embeddings, rigidity, geometric group theory, quaternionic hyperbolic manifolds

Kar, Aditi 1 ; Niblo, Graham 2

1 Mathematical Institute, University of Oxford, 24–29 St Giles’, Oxford, OX1 3LB, UK
2 Mathematical Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
@article{GT_2013_17_4_a5,
     author = {Kar, Aditi and Niblo, Graham},
     title = {A topological splitting theorem for {Poincar\'e} duality groups and high-dimensional manifolds},
     journal = {Geometry & topology},
     pages = {2203--2221},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/}
}
TY  - JOUR
AU  - Kar, Aditi
AU  - Niblo, Graham
TI  - A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds
JO  - Geometry & topology
PY  - 2013
SP  - 2203
EP  - 2221
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/
DO  - 10.2140/gt.2013.17.2203
ID  - GT_2013_17_4_a5
ER  - 
%0 Journal Article
%A Kar, Aditi
%A Niblo, Graham
%T A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds
%J Geometry & topology
%D 2013
%P 2203-2221
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/
%R 10.2140/gt.2013.17.2203
%F GT_2013_17_4_a5
Kar, Aditi; Niblo, Graham. A topological splitting theorem for Poincaré duality groups and high-dimensional manifolds. Geometry & topology, Tome 17 (2013) no. 4, pp. 2203-2221. doi : 10.2140/gt.2013.17.2203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2203/

[1] A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631

[2] R Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London (1976)

[3] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[4] S E Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69

[5] M W Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series 32, Princeton Univ. Press (2008)

[6] W Dicks, M J Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, Cambridge Univ. Press (1989)

[7] J D Dixon, B Mortimer, Permutation groups, Graduate Texts in Mathematics 163, Springer (1996)

[8] M J Dunwoody, M E Sageev, JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25

[9] M J Dunwoody, E L Swenson, The algebraic torus theorem, Invent. Math. 140 (2000) 605

[10] S Eilenberg, T Ganea, On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. 65 (1957) 517

[11] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127

[12] P H Kropholler, A group-theoretic proof of the torus theorem, from: "Geometric group theory, Vol. 1" (editors G A Niblo, M Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 138

[13] P H Kropholler, M A Roller, Splittings of Poincaré duality groups III, J. London Math. Soc. 39 (1989) 271

[14] J F Lafont, R Roy, A note on the characteristic classes of non-positively curved manifolds, Expo. Math. 25 (2007) 21

[15] N Mok, Y T Siu, S K Yeung, Geometric superrigidity, Invent. Math. 113 (1993) 57

[16] G A Niblo, The singularity obstruction for group splittings, Topology Appl. 119 (2002) 17

[17] G Niblo, L Reeves, Groups acting on $\mathrm{CAT}(0)$ cube complexes, Geom. Topol. 1 (1997) 1

[18] C D Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1

[19] A W Reid, A non–Haken hyperbolic 3–manifold covered by a surface bundle, Pacific J. Math. 167 (1995) 163

[20] M Sageev, Codimension 1 subgroups and splittings of groups, J. Algebra 189 (1997) 377

[21] P Scott, Ends of pairs of groups, J. Pure Appl. Algebra 11 (1977/78) 179

[22] P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003)

[23] R Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977) 317

[24] F Waldhausen, On the determination of some bounded 3–manifolds by their fundamental groups alone, from: "Proc. Internat. Sympos. on Topology and its Applications" (editor D R Kurepa) (1969) 331

Cité par Sources :