Comparison of models for (∞,n)–categories, I
Geometry & topology, Tome 17 (2013) no. 4, pp. 2163-2202.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

While many different models for (,1)–categories are currently being used, it is known that they are Quillen equivalent to one another. Several higher-order analogues of them are being developed as models for (,n)–categories. In this paper, we establish model structures for some naturally arising categories of objects which should be thought of as (,n)–categories. Furthermore, we establish Quillen equivalences between them.

DOI : 10.2140/gt.2013.17.2163
Classification : 55U40, 55U35, 18D15, 18D20, 18G30, 18C10
Keywords: $(\infty, n)$–categories, $\Theta_n$–spaces, enriched categories

Bergner, Julia E 1 ; Rezk, Charles 2

1 Department of Mathematics, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
2 Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 West Green Street, Urbana, IL 61801, USA
@article{GT_2013_17_4_a4,
     author = {Bergner, Julia E and Rezk, Charles},
     title = {Comparison of models for (\ensuremath{\infty},n){\textendash}categories, {I}},
     journal = {Geometry & topology},
     pages = {2163--2202},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2163},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2163/}
}
TY  - JOUR
AU  - Bergner, Julia E
AU  - Rezk, Charles
TI  - Comparison of models for (∞,n)–categories, I
JO  - Geometry & topology
PY  - 2013
SP  - 2163
EP  - 2202
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2163/
DO  - 10.2140/gt.2013.17.2163
ID  - GT_2013_17_4_a4
ER  - 
%0 Journal Article
%A Bergner, Julia E
%A Rezk, Charles
%T Comparison of models for (∞,n)–categories, I
%J Geometry & topology
%D 2013
%P 2163-2202
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2163/
%R 10.2140/gt.2013.17.2163
%F GT_2013_17_4_a4
Bergner, Julia E; Rezk, Charles. Comparison of models for (∞,n)–categories, I. Geometry & topology, Tome 17 (2013) no. 4, pp. 2163-2202. doi : 10.2140/gt.2013.17.2163. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2163/

[1] D Ayala, N Rozenblyum, work in progress

[2] B Badzioch, Algebraic theories in homotopy theory, Ann. of Math. 155 (2002) 895

[3] C Barwick, Homotopy coherent algebra II: Iterated wreath products of $O$ and $(\infty, n)$–categories, In preparation

[4] C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories

[5] T Beke, Sheafifiable homotopy model categories, II, J. Pure Appl. Algebra 164 (2001) 307

[6] C Berger, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007) 230

[7] J E Bergner, Rigidification of algebras over multi-sorted theories, Algebr. Geom. Topol. 6 (2006) 1925

[8] J E Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043

[9] J E Bergner, Simplicial monoids and Segal categories, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 59

[10] J E Bergner, Three models for the homotopy theory of homotopy theories, Topology 46 (2007) 397

[11] J E Bergner, A survey of $(\infty,1)$–categories, from: "Towards higher categories", IMA Vol. Math. Appl. 152, Springer (2010) 69

[12] J E Bergner, C Rezk, Enriched Segal categories, In preparation

[13] J E Bergner, C Rezk, Reedy categories and the $\varTheta$–construction, Math. Z. 274 (2013) 499

[14] D Dugger, D I Spivak, Mapping spaces in quasicategories, Algebr. Geom. Topol. 11 (2011) 263

[15] W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 73

[16] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser (1999)

[17] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003)

[18] A Hirschowitz, C Simpson, Descente pour les $n$–champs

[19] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999)

[20] A Joyal, Simplicial categories vs quasi-categories, In preparation

[21] A Joyal, The theory of quasi-categories I, In preparation

[22] A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277

[23] J Jurie, $(\infty, 2)$–categories and Goodwillie calculus

[24] J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ. Press (2009)

[25] J Lurie, On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press, Somerville, MA (2009) 129

[26] S Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998)

[27] R Pellissier, Catégories enrichies faibles

[28] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)

[29] C L Reedy, Homotopy theory of model categories, Unpublished manuscript

[30] C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973

[31] C Rezk, A Cartesian presentation of weak $n$–categories, Geom. Topol. 14 (2010) 521

[32] C Simpson, Homotopy theory of higher categories, New Mathematical Monographs 19, Cambridge Univ. Press (2012)

[33] B Toën, Vers une axiomatisation de la théorie des catégories supérieures, $K$–Theory 34 (2005) 233

[34] D R B Verity, Weak complicial sets, I: Basic homotopy theory, Adv. Math. 219 (2008) 1081

Cité par Sources :