A variation of McShane’s identity for 2–bridge links
Geometry & topology, Tome 17 (2013) no. 4, pp. 2061-2101.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a variation of McShane’s identity, which describes the cusp shape of a hyperbolic 2–bridge link in terms of the complex translation lengths of simple loops on the bridge sphere. We also explicitly determine the set of end invariants of SL(2, )–characters of the once-punctured torus corresponding to the holonomy representations of the complete hyperbolic structures of 2–bridge link complements.

DOI : 10.2140/gt.2013.17.2061
Classification : 20F06, 57M25, 57M50
Keywords: 2-bridge link, 2-bridge knot, punctured torus, end invariant, McShane's identity

Lee, Donghi 1 ; Sakuma, Makoto 2

1 Department of Mathematics, Pusan National University, Pusan 609-735, South Korea
2 Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
@article{GT_2013_17_4_a2,
     author = {Lee, Donghi and Sakuma, Makoto},
     title = {A variation of {McShane{\textquoteright}s} identity for 2{\textendash}bridge links},
     journal = {Geometry & topology},
     pages = {2061--2101},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.2061},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2061/}
}
TY  - JOUR
AU  - Lee, Donghi
AU  - Sakuma, Makoto
TI  - A variation of McShane’s identity for 2–bridge links
JO  - Geometry & topology
PY  - 2013
SP  - 2061
EP  - 2101
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2061/
DO  - 10.2140/gt.2013.17.2061
ID  - GT_2013_17_4_a2
ER  - 
%0 Journal Article
%A Lee, Donghi
%A Sakuma, Makoto
%T A variation of McShane’s identity for 2–bridge links
%J Geometry & topology
%D 2013
%P 2061-2101
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2061/
%R 10.2140/gt.2013.17.2061
%F GT_2013_17_4_a2
Lee, Donghi; Sakuma, Makoto. A variation of McShane’s identity for 2–bridge links. Geometry & topology, Tome 17 (2013) no. 4, pp. 2061-2101. doi : 10.2140/gt.2013.17.2061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.2061/

[1] W Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980)

[2] H Akiyoshi, H Miyachi, M Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 21

[3] H Akiyoshi, H Miyachi, M Sakuma, Variations of McShane's identity for punctured surface groups, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 151

[4] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups. I, Lecture Notes in Mathematics 1909, Springer (2007)

[5] B H Bowditch, A proof of McShane's identity via Markoff triples, Bull. London Math. Soc. 28 (1996) 73

[6] B H Bowditch, A variation of McShane's identity for once-punctured torus bundles, Topology 36 (1997) 325

[7] B H Bowditch, Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. 77 (1998) 697

[8] W Dicks, M Sakuma, On hyperbolic once-punctured-torus bundles. III. Comparing two tessellations of the complex plane, Topology Appl. 157 (2010) 1873

[9] D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67

[10] F Guéritaud, Géométrie hyperbolique effective et triangulations idéales canoniques en dimension trois, PhD thesis, Université Paris Sud – Paris XI (2006)

[11] F Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239

[12] D Lee, M Sakuma, Simple loops on 2–bridge spheres in 2–bridge link complements, Electron. Res. Announc. Math. Sci. 18 (2011) 97

[13] D Lee, M Sakuma, Epimorphisms between 2–bridge link groups: homotopically trivial simple loops on 2–bridge spheres, Proc. Lond. Math. Soc. 104 (2012) 359

[14] D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (I), to appear in Geom. Dedicata

[15] D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (II), to appear in Geom. Dedicata

[16] D Lee, M Sakuma, Homotopically equivalent simple loops on 2–bridge spheres in 2–bridge link complements (III), to appear in Geom. Dedicata

[17] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford University Press (1998)

[18] G Mcshane, A remarkable identity for lengths of curves, PhD thesis, University of Warwick (1991)

[19] G Mcshane, Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998) 607

[20] M Mirzakhani, Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007) 179

[21] T Nakanishi, A series associated to generating pairs of a once punctured torus group and a proof of McShane's identity, Hiroshima Math. J. 41 (2011) 11

[22] T Ohtsuki, R Riley, M Sakuma, Epimorphisms between 2–bridge link groups, from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr. 14 (2008) 417

[23] M Sakuma, Variations of McShane's identity for the Riley slice and 2–bridge links, Sūrikaisekikenkyūsho Kōkyūroku 1104 (1999) 103

[24] M Sakuma, Epimorphisms between 2–bridge knot groups from the view point of Markoff maps, from: "Intelligence of low dimensional topology 2006" (editors J S Carter, S Kamada, L H Kauffman, A Kawauchi, T Kohno), Ser. Knots Everything 40, World Sci. Publ., Hackensack, NJ (2007) 279

[25] M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. 21 (1995) 393

[26] H Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956) 133

[27] M Sheingorn, Characterization of simple closed geodesics on Fricke surfaces, Duke Math. J. 52 (1985) 535

[28] S P Tan, Y L Wong, Y Zhang, The $\mathrm{SL}(2,\mathbb C)$ character variety of a one-holed torus, Electron. Res. Announc. Amer. Math. Soc. 11 (2005) 103

[29] S P Tan, Y L Wong, Y Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces, J. Differential Geom. 72 (2006) 73

[30] S P Tan, Y L Wong, Y Zhang, Necessary and sufficient conditions for McShane's identity and variations, Geom. Dedicata 119 (2006) 199

[31] S P Tan, Y L Wong, Y Zhang, End invariants for $\mathrm{SL}(2,\mathbb C)$ characters of the one-holed torus, Amer. J. Math. 130 (2008) 385

[32] S P Tan, Y L Wong, Y Zhang, Generalized Markoff maps and McShane's identity, Adv. Math. 217 (2008) 761

[33] S P Tan, Y L Wong, Y Zhang, McShane's identity for classical Schottky groups, Pacific J. Math. 237 (2008) 183

[34] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[35] M Wada, OPTi

[36] J Weeks, SnapPea

[37] J R Weeks, Convex hulls and isometries of cusped hyperbolic $3$–manifolds, Topology Appl. 52 (1993) 127

[38] Y Yamashita, calc.py (2012)

Cité par Sources :