Pseudo-Anosov flows in toroidal manifolds
Geometry & topology, Tome 17 (2013) no. 4, pp. 1877-1954.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal 3–manifolds: we show that a pseudo-Anosov flow in a Seifert fibered manifold is up to finite covers topologically equivalent to a geodesic flow and we show that a pseudo-Anosov flow in a solv manifold is topologically equivalent to a suspension Anosov flow. Then we study the interaction of a general pseudo-Anosov flow with possible Seifert fibered pieces in the torus decomposition: if the fiber is associated with a periodic orbit of the flow, we show that there is a standard and very simple form for the flow in the piece using Birkhoff annuli. This form is strongly connected with the topology of the Seifert piece. We also construct a large new class of examples in many graph manifolds, which is extremely general and flexible. We construct other new classes of examples, some of which are generalized pseudo-Anosov flows which have one-prong singularities and which show that the above results in Seifert fibered and solvable manifolds do not apply to one-prong pseudo-Anosov flows. Finally we also analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-Anosov flow.

DOI : 10.2140/gt.2013.17.1877
Classification : 37D20, 37D50, 57M60, 57R30
Keywords: Pseudo-Anosov flows, toroidal manifolds, Seifert fibered spaces, graph manifolds

Barbot, Thierry 1 ; Fenley, Sérgio R 2

1 Avignon University, LMA, 33 Rue Louis Pasteur, 84000 Avignon, France
2 Department of Mathematics, Florida State University, Room 208, 1017 Academic Way, Tallahassee, FL 32306-4510, USA
@article{GT_2013_17_4_a0,
     author = {Barbot, Thierry and Fenley, S\'ergio R},
     title = {Pseudo-Anosov flows in toroidal manifolds},
     journal = {Geometry & topology},
     pages = {1877--1954},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2013},
     doi = {10.2140/gt.2013.17.1877},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/}
}
TY  - JOUR
AU  - Barbot, Thierry
AU  - Fenley, Sérgio R
TI  - Pseudo-Anosov flows in toroidal manifolds
JO  - Geometry & topology
PY  - 2013
SP  - 1877
EP  - 1954
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/
DO  - 10.2140/gt.2013.17.1877
ID  - GT_2013_17_4_a0
ER  - 
%0 Journal Article
%A Barbot, Thierry
%A Fenley, Sérgio R
%T Pseudo-Anosov flows in toroidal manifolds
%J Geometry & topology
%D 2013
%P 1877-1954
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/
%R 10.2140/gt.2013.17.1877
%F GT_2013_17_4_a0
Barbot, Thierry; Fenley, Sérgio R. Pseudo-Anosov flows in toroidal manifolds. Geometry & topology, Tome 17 (2013) no. 4, pp. 1877-1954. doi : 10.2140/gt.2013.17.1877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/

[1] D V Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics 90, Amer. Math. Soc. (1969)

[2] T Barbot, Caractérisation des flots d'Anosov en dimension $3$ par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247

[3] T Barbot, Mise en position optimale de tores par rapport à un flot d'Anosov, Comment. Math. Helv. 70 (1995) 113

[4] T Barbot, Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451

[5] T Barbot, Actions de groupes sur les $1$–variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. 7 (1998) 559

[6] T Barbot, Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749

[7] T Barbot, Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. 34 (2001) 871

[8] T Barbot, De l'hyperbolique au globalement hyperbolique (2007)

[9] C Bonatti, R Langevin, Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633

[10] D Calegari, The geometry of $\mathbb R$–covered foliations, Geom. Topol. 4 (2000) 457

[11] D Calegari, Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1

[12] D Calegari, Promoting essential laminations, Invent. Math. 166 (2006) 583

[13] A Casson, D Jungreis, Convergence groups and Seifert fibered $3$–manifolds, Invent. Math. 118 (1994) 441

[14] S R Fenley, Anosov flows in $3$–manifolds, Ann. of Math. 139 (1994) 79

[15] S R Fenley, The structure of branching in Anosov flows of $3$–manifolds, Comment. Math. Helv. 73 (1998) 259

[16] S R Fenley, Foliations with good geometry, J. Amer. Math. Soc. 12 (1999) 619

[17] S R Fenley, Foliations, topology and geometry of $3$–manifolds: $\mathbb R$–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415

[18] S R Fenley, Pseudo–Anosov flows and incompressible tori, Geom. Dedicata 99 (2003) 61

[19] S R Fenley, Laminar free hyperbolic $3$–manifolds, Comment. Math. Helv. 82 (2007) 247

[20] S R Fenley, Geometry of foliations and flows, I: Almost transverse pseudo-Anosov flows and asymptotic behavior of foliations, J. Differential Geom. 81 (2009) 1

[21] S R Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012) 1

[22] S R Fenley, L Mosher, Quasigeodesic flows in hyperbolic $3$–manifolds, Topology 40 (2001) 503

[23] J Franks, Anosov diffeomorphisms, from: "Global Analysis", Amer. Math. Soc. (1970) 61

[24] J Franks, B Williams, Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158

[25] D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299

[26] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447

[27] D Gabai, W H Kazez, Group negative curvature for $3$–manifolds with genuine laminations, Geom. Topol. 2 (1998) 65

[28] D Gabai, U Oertel, Essential laminations in $3$–manifolds, Ann. of Math. 130 (1989) 41

[29] É Ghys, Flots d'Anosov sur les $3$–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67

[30] S Goodman, Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300

[31] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95

[32] J Hempel, $3$–Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976)

[33] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)

[34] W Jaco, P B Shalen, Seifert fibered spaces in $3$–manifolds, from: "Geometric topology" (editor J C Cantrell), Academic Press (1979) 91

[35] K Johannson, Homotopy equivalences of $3$–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)

[36] J L Kelley, General topology, D. Van Nostrand Company (1955)

[37] L Mosher, Laminations and flows transverse to finite depth foliations

[38] L Mosher, Dynamical systems and the homology norm of a $3$–manifold. I: Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449

[39] L Mosher, Dynamical systems and the homology norm of a $3$–manifold, II, Invent. Math. 107 (1992) 243

[40] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[41] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[42] G Perelman, Ricci flow with surgery on three-manifolds

[43] R Roberts, J Shareshian, M Stein, Infinitely many hyperbolic $3$–manifolds which contain no Reebless foliation, J. Amer. Math. Soc. 16 (2003) 639

[44] R Roberts, M Stein, Group actions on order trees, Topology Appl. 115 (2001) 175

[45] W P Thurston, Hyperbolic structures on $3$–manifolds II: Surface groups and $3$–manifolds that fiber over the circle, preprint

[46] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[47] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417

[48] W P Thurston, Three manifolds, foliations and circles, I, preprint (1997)

[49] W P Thurston, Three manifolds, foliations and circles, II: The transverse asymptotic geometry of foliations, preprint (1998)

[50] R Waller, Surfaces which are flow graphs, in preparation

Cité par Sources :