Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal –manifolds: we show that a pseudo-Anosov flow in a Seifert fibered manifold is up to finite covers topologically equivalent to a geodesic flow and we show that a pseudo-Anosov flow in a solv manifold is topologically equivalent to a suspension Anosov flow. Then we study the interaction of a general pseudo-Anosov flow with possible Seifert fibered pieces in the torus decomposition: if the fiber is associated with a periodic orbit of the flow, we show that there is a standard and very simple form for the flow in the piece using Birkhoff annuli. This form is strongly connected with the topology of the Seifert piece. We also construct a large new class of examples in many graph manifolds, which is extremely general and flexible. We construct other new classes of examples, some of which are generalized pseudo-Anosov flows which have one-prong singularities and which show that the above results in Seifert fibered and solvable manifolds do not apply to one-prong pseudo-Anosov flows. Finally we also analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-Anosov flow.
Barbot, Thierry 1 ; Fenley, Sérgio R 2
@article{GT_2013_17_4_a0, author = {Barbot, Thierry and Fenley, S\'ergio R}, title = {Pseudo-Anosov flows in toroidal manifolds}, journal = {Geometry & topology}, pages = {1877--1954}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2013}, doi = {10.2140/gt.2013.17.1877}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/} }
TY - JOUR AU - Barbot, Thierry AU - Fenley, Sérgio R TI - Pseudo-Anosov flows in toroidal manifolds JO - Geometry & topology PY - 2013 SP - 1877 EP - 1954 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/ DO - 10.2140/gt.2013.17.1877 ID - GT_2013_17_4_a0 ER -
Barbot, Thierry; Fenley, Sérgio R. Pseudo-Anosov flows in toroidal manifolds. Geometry & topology, Tome 17 (2013) no. 4, pp. 1877-1954. doi : 10.2140/gt.2013.17.1877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1877/
[1] Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics 90, Amer. Math. Soc. (1969)
,[2] Caractérisation des flots d'Anosov en dimension $3$ par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247
,[3] Mise en position optimale de tores par rapport à un flot d'Anosov, Comment. Math. Helv. 70 (1995) 113
,[4] Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451
,[5] Actions de groupes sur les $1$–variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. 7 (1998) 559
,[6] Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749
,[7] Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. 34 (2001) 871
,[8] De l'hyperbolique au globalement hyperbolique (2007)
,[9] Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633
, ,[10] The geometry of $\mathbb R$–covered foliations, Geom. Topol. 4 (2000) 457
,[11] Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1
,[12] Promoting essential laminations, Invent. Math. 166 (2006) 583
,[13] Convergence groups and Seifert fibered $3$–manifolds, Invent. Math. 118 (1994) 441
, ,[14] Anosov flows in $3$–manifolds, Ann. of Math. 139 (1994) 79
,[15] The structure of branching in Anosov flows of $3$–manifolds, Comment. Math. Helv. 73 (1998) 259
,[16] Foliations with good geometry, J. Amer. Math. Soc. 12 (1999) 619
,[17] Foliations, topology and geometry of $3$–manifolds: $\mathbb R$–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415
,[18] Pseudo–Anosov flows and incompressible tori, Geom. Dedicata 99 (2003) 61
,[19] Laminar free hyperbolic $3$–manifolds, Comment. Math. Helv. 82 (2007) 247
,[20] Geometry of foliations and flows, I: Almost transverse pseudo-Anosov flows and asymptotic behavior of foliations, J. Differential Geom. 81 (2009) 1
,[21] Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012) 1
,[22] Quasigeodesic flows in hyperbolic $3$–manifolds, Topology 40 (2001) 503
, ,[23] Anosov diffeomorphisms, from: "Global Analysis", Amer. Math. Soc. (1970) 61
,[24] Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158
, ,[25] Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299
,[26] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447
,[27] Group negative curvature for $3$–manifolds with genuine laminations, Geom. Topol. 2 (1998) 65
, ,[28] Essential laminations in $3$–manifolds, Ann. of Math. 130 (1989) 41
, ,[29] Flots d'Anosov sur les $3$–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67
,[30] Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300
,[31] Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95
, ,[32] $3$–Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976)
,[33] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)
,[34] Seifert fibered spaces in $3$–manifolds, from: "Geometric topology" (editor J C Cantrell), Academic Press (1979) 91
, ,[35] Homotopy equivalences of $3$–manifolds with boundaries, Lecture Notes in Mathematics 761, Springer (1979)
,[36] General topology, D. Van Nostrand Company (1955)
,[37] Laminations and flows transverse to finite depth foliations
,[38] Dynamical systems and the homology norm of a $3$–manifold. I: Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449
,[39] Dynamical systems and the homology norm of a $3$–manifold, II, Invent. Math. 107 (1992) 243
,[40] The entropy formula for the Ricci flow and its geometric applications
,[41] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
,[42] Ricci flow with surgery on three-manifolds
,[43] Infinitely many hyperbolic $3$–manifolds which contain no Reebless foliation, J. Amer. Math. Soc. 16 (2003) 639
, , ,[44] Group actions on order trees, Topology Appl. 115 (2001) 175
, ,[45] Hyperbolic structures on $3$–manifolds II: Surface groups and $3$–manifolds that fiber over the circle, preprint
,[46] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[47] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417
,[48] Three manifolds, foliations and circles, I, preprint (1997)
,[49] Three manifolds, foliations and circles, II: The transverse asymptotic geometry of foliations, preprint (1998)
,[50] Surfaces which are flow graphs, in preparation
,Cité par Sources :