Dehn filling and the geometry of unknotting tunnels
Geometry & topology, Tome 17 (2013) no. 3, pp. 1815-1876.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Any one-cusped hyperbolic manifold M with an unknotting tunnel τ is obtained by Dehn filling a cusp of a two-cusped hyperbolic manifold. In the case where M is obtained by “generic” Dehn filling, we prove that τ is isotopic to a geodesic, and characterize whether τ is isotopic to an edge in the canonical decomposition of M. We also give explicit estimates (with additive error only) on the length of τ relative to a maximal cusp. These results give generic answers to three long-standing questions posed by Adams, Sakuma and Weeks.

We also construct an explicit sequence of one-tunnel knots in S3, all of whose unknotting tunnels have length approaching infinity.

DOI : 10.2140/gt.2013.17.1815
Classification : 57M25, 57M50, 57R52
Keywords: unknotting tunnel, hyperbolic 3–manifold, hyperbolic knot, geodesic, length, Dehn filling

Cooper, Daryl 1 ; Futer, David 2 ; Purcell, Jessica S 3

1 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
2 Department of Mathematics, Temple University, Philadelphia, PA 19147, USA
3 Department of Mathematics, Brigham Young University, Provo, UT 84602-6539, USA
@article{GT_2013_17_3_a12,
     author = {Cooper, Daryl and Futer, David and Purcell, Jessica S},
     title = {Dehn filling and the geometry of unknotting tunnels},
     journal = {Geometry & topology},
     pages = {1815--1876},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1815},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/}
}
TY  - JOUR
AU  - Cooper, Daryl
AU  - Futer, David
AU  - Purcell, Jessica S
TI  - Dehn filling and the geometry of unknotting tunnels
JO  - Geometry & topology
PY  - 2013
SP  - 1815
EP  - 1876
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/
DO  - 10.2140/gt.2013.17.1815
ID  - GT_2013_17_3_a12
ER  - 
%0 Journal Article
%A Cooper, Daryl
%A Futer, David
%A Purcell, Jessica S
%T Dehn filling and the geometry of unknotting tunnels
%J Geometry & topology
%D 2013
%P 1815-1876
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/
%R 10.2140/gt.2013.17.1815
%F GT_2013_17_3_a12
Cooper, Daryl; Futer, David; Purcell, Jessica S. Dehn filling and the geometry of unknotting tunnels. Geometry & topology, Tome 17 (2013) no. 3, pp. 1815-1876. doi : 10.2140/gt.2013.17.1815. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/

[1] C Adams, Unknotting tunnels in hyperbolic 3–manifolds, Math. Ann. 302 (1995) 177

[2] C C Adams, Waist size for cusps in hyperbolic 3–manifolds, Topology 41 (2002) 257

[3] C C Adams, Waist size for cusps in hyperbolic 3–manifolds, II, preprint available from the author (2002)

[4] C C Adams, A W Reid, Unknotting tunnels in two-bridge knot and link complements, Comment. Math. Helv. 71 (1996) 617

[5] H Akiyoshi, Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein–Penner’s method, Proc. Amer. Math. Soc. 129 (2001) 2431

[6] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–bridge knot groups, I, 1909, Springer (2007)

[7] D Bachman, Normalizing Heegaard–Scharlemann–Thompson splittings

[8] R Benedetti, C Petronio, Lectures on hyperbolic geometry, , Springer (1992)

[9] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809

[10] S A Bleiler, Y Moriah, Heegaard splittings and branched coverings of B3, Math. Ann. 281 (1988) 531

[11] J F Brock, K W Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004) 33

[12] B A Burton, Regina : normal surface and 3–manifold topology software

[13] D Cooper, M Lackenby, J S Purcell, The length of unknotting tunnels, Algebr. Geom. Topol. 10 (2010) 637

[14] M Culler, N M Dunfield, J R Weeks, SnapPy, a computer program for studying the geometry and topology of 3–manifolds

[15] M Culler, P B Shalen, Margulis numbers for Haken manifolds, Israel J. Math. 190 (2012) 445

[16] N M Dunfield, D P Thurston, A random tunnel number one 3-manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431

[17] W Fenchel, Elementary geometry in hyperbolic space, 11, Walter de Gruyter Co. (1989)

[18] D Futer, Involutions of knots that fix unknotting tunnels, J. Knot Theory Ramifications 16 (2007) 741

[19] D Futer, E Kalfagianni, J S Purcell, Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008) 429

[20] D Futer, J S Purcell, Explicit Dehn filling and Heegaard splittings, Comm. Anal. Geom. 21 (2013) 625

[21] F Guéritaud, Géométrie hyperbolique effective et triangulations idéales canoniques en dimension trois, PhD thesis, Université de Paris–XI (Orsay) (2006)

[22] F Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239

[23] F Guéritaud, S Schleimer, Canonical triangulations of Dehn fillings, Geom. Topol. 14 (2010) 193

[24] R Guo, F Luo, Rigidity of polyhedral surfaces, II, Geom. Topol. 13 (2009) 1265

[25] J Hass, Genus two Heegaard splittings, Proc. Amer. Math. Soc. 114 (1992) 565

[26] D J Heath, H J Song, Unknotting tunnels for P(−2,3,7), J. Knot Theory Ramifications 14 (2005) 1077

[27] C D Hodgson, S P Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Ann. of Math. 162 (2005) 367

[28] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243

[29] T Li, Heegaard surfaces and measured laminations, I : The Waldhausen conjecture, Invent. Math. 167 (2007) 135

[30] M Lustig, Y Moriah, Are large distance Heegaard splittings generic ?

[31] A D Magid, Deformation spaces of Kleinian surface groups are not locally connected, Geom. Topol. 16 (2012) 1247

[32] J Maher, Random Heegaard splittings, J. Topol. 3 (2010) 997

[33] R Meyerhoff, A lower bound for the volume of hyperbolic 3–manifolds, Canad. J. Math. 39 (1987) 1038

[34] Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997) 375

[35] H Moser, Proving a manifold to be hyperbolic once it has been approximated to be so, Algebr. Geom. Topol. 9 (2009) 103

[36] W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: "Topology ’90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273

[37] Y Rieck, E Sedgwick, Persistence of Heegaard structures under Dehn filling, Topology Appl. 109 (2001) 41

[38] J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[39] M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. 21 (1995) 393

[40] M Scharlemann, Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18 (1984) 235

[41] M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593

[42] S Schleimer, Sphere recognition lies in NP, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 183

[43] P B Shalen, A generic Margulis number for hyperbolic 3–manifolds, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 103

[44] M Stocking, Almost normal surfaces in 3–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171

[45] W P Thurston, Three-dimensional geometry and topology, Vol. 1, 35, Princeton Univ. Press (1997)

[46] J L Tollefson, Involutions of sufficiently large 3–manifolds, Topology 20 (1981) 323

[47] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56

Cité par Sources :