Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Any one-cusped hyperbolic manifold with an unknotting tunnel is obtained by Dehn filling a cusp of a two-cusped hyperbolic manifold. In the case where is obtained by “generic” Dehn filling, we prove that is isotopic to a geodesic, and characterize whether is isotopic to an edge in the canonical decomposition of . We also give explicit estimates (with additive error only) on the length of relative to a maximal cusp. These results give generic answers to three long-standing questions posed by Adams, Sakuma and Weeks.
We also construct an explicit sequence of one-tunnel knots in , all of whose unknotting tunnels have length approaching infinity.
Cooper, Daryl 1 ; Futer, David 2 ; Purcell, Jessica S 3
@article{GT_2013_17_3_a12, author = {Cooper, Daryl and Futer, David and Purcell, Jessica S}, title = {Dehn filling and the geometry of unknotting tunnels}, journal = {Geometry & topology}, pages = {1815--1876}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1815}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/} }
TY - JOUR AU - Cooper, Daryl AU - Futer, David AU - Purcell, Jessica S TI - Dehn filling and the geometry of unknotting tunnels JO - Geometry & topology PY - 2013 SP - 1815 EP - 1876 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/ DO - 10.2140/gt.2013.17.1815 ID - GT_2013_17_3_a12 ER -
%0 Journal Article %A Cooper, Daryl %A Futer, David %A Purcell, Jessica S %T Dehn filling and the geometry of unknotting tunnels %J Geometry & topology %D 2013 %P 1815-1876 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/ %R 10.2140/gt.2013.17.1815 %F GT_2013_17_3_a12
Cooper, Daryl; Futer, David; Purcell, Jessica S. Dehn filling and the geometry of unknotting tunnels. Geometry & topology, Tome 17 (2013) no. 3, pp. 1815-1876. doi : 10.2140/gt.2013.17.1815. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1815/
[1] Unknotting tunnels in hyperbolic 3–manifolds, Math. Ann. 302 (1995) 177
,[2] Waist size for cusps in hyperbolic 3–manifolds, Topology 41 (2002) 257
,[3] Waist size for cusps in hyperbolic 3–manifolds, II, preprint available from the author (2002)
,[4] Unknotting tunnels in two-bridge knot and link complements, Comment. Math. Helv. 71 (1996) 617
, ,[5] Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein–Penner’s method, Proc. Amer. Math. Soc. 129 (2001) 2431
,[6] Punctured torus groups and 2–bridge knot groups, I, 1909, Springer (2007)
, , , ,[7] Normalizing Heegaard–Scharlemann–Thompson splittings
,[8] Lectures on hyperbolic geometry, , Springer (1992)
, ,[9] Spherical space forms and Dehn filling, Topology 35 (1996) 809
, ,[10] Heegaard splittings and branched coverings of B3, Math. Ann. 281 (1988) 531
, ,[11] On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004) 33
, ,[12] Regina : normal surface and 3–manifold topology software
,[13] The length of unknotting tunnels, Algebr. Geom. Topol. 10 (2010) 637
, , ,[14] SnapPy, a computer program for studying the geometry and topology of 3–manifolds
, , ,[15] Margulis numbers for Haken manifolds, Israel J. Math. 190 (2012) 445
, ,[16] A random tunnel number one 3-manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431
, ,[17] Elementary geometry in hyperbolic space, 11, Walter de Gruyter Co. (1989)
,[18] Involutions of knots that fix unknotting tunnels, J. Knot Theory Ramifications 16 (2007) 741
,[19] Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008) 429
, , ,[20] Explicit Dehn filling and Heegaard splittings, Comm. Anal. Geom. 21 (2013) 625
, ,[21] Géométrie hyperbolique effective et triangulations idéales canoniques en dimension trois, PhD thesis, Université de Paris–XI (Orsay) (2006)
,[22] On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239
,[23] Canonical triangulations of Dehn fillings, Geom. Topol. 14 (2010) 193
, ,[24] Rigidity of polyhedral surfaces, II, Geom. Topol. 13 (2009) 1265
, ,[25] Genus two Heegaard splittings, Proc. Amer. Math. Soc. 114 (1992) 565
,[26] Unknotting tunnels for P(−2,3,7), J. Knot Theory Ramifications 14 (2005) 1077
, ,[27] Universal bounds for hyperbolic Dehn surgery, Ann. of Math. 162 (2005) 367
, ,[28] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243
,[29] Heegaard surfaces and measured laminations, I : The Waldhausen conjecture, Invent. Math. 167 (2007) 135
,[30] Are large distance Heegaard splittings generic ?
, ,[31] Deformation spaces of Kleinian surface groups are not locally connected, Geom. Topol. 16 (2012) 1247
,[32] Random Heegaard splittings, J. Topol. 3 (2010) 997
,[33] A lower bound for the volume of hyperbolic 3–manifolds, Canad. J. Math. 39 (1987) 1038
,[34] Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997) 375
, ,[35] Proving a manifold to be hyperbolic once it has been approximated to be so, Algebr. Geom. Topol. 9 (2009) 103
,[36] Arithmetic of hyperbolic manifolds, from: "Topology ’90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273
, ,[37] Persistence of Heegaard structures under Dehn filling, Topology Appl. 109 (2001) 41
, ,[38] Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[39] Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. 21 (1995) 393
, ,[40] Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18 (1984) 235
,[41] Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593
, ,[42] Sphere recognition lies in NP, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 183
,[43] A generic Margulis number for hyperbolic 3–manifolds, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 103
,[44] Almost normal surfaces in 3–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171
,[45] Three-dimensional geometry and topology, Vol. 1, 35, Princeton Univ. Press (1997)
,[46] Involutions of sufficiently large 3–manifolds, Topology 20 (1981) 323
,[47] On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56
,Cité par Sources :