Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the presence of a plastikstufe induces a certain degree of flexibility in contact manifolds of dimension . More precisely, we prove that every Legendrian knot whose complement contains a “nice” plastikstufe can be destabilized (and, as a consequence, is loose). As an application, it follows in certain situations that two nonisomorphic contact structures become isomorphic after connect-summing with a manifold containing a plastikstufe.
Murphy, Emmy 1 ; Niederkrüger, Klaus 2 ; Plamenevskaya, Olga 3 ; Stipsicz, András I 4
@article{GT_2013_17_3_a11, author = {Murphy, Emmy and Niederkr\"uger, Klaus and Plamenevskaya, Olga and Stipsicz, Andr\'as I}, title = {Loose {Legendrians} and the plastikstufe}, journal = {Geometry & topology}, pages = {1791--1814}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1791}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/} }
TY - JOUR AU - Murphy, Emmy AU - Niederkrüger, Klaus AU - Plamenevskaya, Olga AU - Stipsicz, András I TI - Loose Legendrians and the plastikstufe JO - Geometry & topology PY - 2013 SP - 1791 EP - 1814 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/ DO - 10.2140/gt.2013.17.1791 ID - GT_2013_17_3_a11 ER -
%0 Journal Article %A Murphy, Emmy %A Niederkrüger, Klaus %A Plamenevskaya, Olga %A Stipsicz, András I %T Loose Legendrians and the plastikstufe %J Geometry & topology %D 2013 %P 1791-1814 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/ %R 10.2140/gt.2013.17.1791 %F GT_2013_17_3_a11
Murphy, Emmy; Niederkrüger, Klaus; Plamenevskaya, Olga; Stipsicz, András I. Loose Legendrians and the plastikstufe. Geometry & topology, Tome 17 (2013) no. 3, pp. 1791-1814. doi : 10.2140/gt.2013.17.1791. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/
[1] Altering symplectic manifolds by homologous recombination
, ,[2] From Stein to Weinstein and back : Symplectic geometry of affine complex manifolds, 59 (2012)
, ,[3] Legendrian knots in overtwisted contact structures on S3, Ann. Global Anal. Geom. 19 (2001) 293
,[4] Non-isotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85
, , ,[5] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623
,[6] Topologically trivial Legendrian knots, J. Symplectic Geom. 7 (2009) 77
, ,[7] Introduction to the h–principle, 48, Amer. Math. Soc. (2002)
, ,[8] On knots in overtwisted contact structures
,[9] Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier B. V., Amsterdam (2005) 105
,[10] On generalizing Lutz twists, J. Lond. Math. Soc. 84 (2011) 670
, ,[11] An introduction to contact topology, 109, Cambridge Univ. Press (2008)
,[12] Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637
,[13] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the ICM, Vol. II" (editor T Li), Higher Ed. Press (2002) 405
,[14] Partial differential relations, 9, Springer (1986)
,[15] On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309
,[16] A proof of the classification theorem of overtwisted contact structures via convex surface theory
,[17] Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287
, , ,[18] Personal communication
,[19] Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877
,[20] Loose Legendrian embeddings in high dimensional contact manifolds
,[21] Habilitation, Toulouse, in preparation
,[22] The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473
,[23] Some remarks on the size of tubular neighborhoods in contact topology and fillability, Geom. Topol. 14 (2010) 719
, ,[24] The symplectic topology of Ramanujam’s surface, Comment. Math. Helv. 80 (2005) 859
, ,[25] Infinitely many contact structures on S4m+1, Internat. Math. Res. Notices (1999) 781
,[26] Existence of Engel structures, Ann. of Math. 169 (2009) 79
,Cité par Sources :