Loose Legendrians and the plastikstufe
Geometry & topology, Tome 17 (2013) no. 3, pp. 1791-1814.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the presence of a plastikstufe induces a certain degree of flexibility in contact manifolds of dimension 2n + 1 > 3. More precisely, we prove that every Legendrian knot whose complement contains a “nice” plastikstufe can be destabilized (and, as a consequence, is loose). As an application, it follows in certain situations that two nonisomorphic contact structures become isomorphic after connect-summing with a manifold containing a plastikstufe.

DOI : 10.2140/gt.2013.17.1791
Classification : 57R17
Keywords: contact manifolds, loose Legendrian knots, plastikstufe, overtwisted contact manifolds

Murphy, Emmy 1 ; Niederkrüger, Klaus 2 ; Plamenevskaya, Olga 3 ; Stipsicz, András I 4

1 Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2 Institut de math., Université Paul Sabatier – Toulouse III, 31062 Toulouse, Cedex 9, France
3 Department of Mathematics, Stony Brook University, Stony Brook, NY 11790, USA
4 Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Hungary
@article{GT_2013_17_3_a11,
     author = {Murphy, Emmy and Niederkr\"uger, Klaus and Plamenevskaya, Olga and Stipsicz, Andr\'as I},
     title = {Loose {Legendrians} and the plastikstufe},
     journal = {Geometry & topology},
     pages = {1791--1814},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1791},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/}
}
TY  - JOUR
AU  - Murphy, Emmy
AU  - Niederkrüger, Klaus
AU  - Plamenevskaya, Olga
AU  - Stipsicz, András I
TI  - Loose Legendrians and the plastikstufe
JO  - Geometry & topology
PY  - 2013
SP  - 1791
EP  - 1814
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/
DO  - 10.2140/gt.2013.17.1791
ID  - GT_2013_17_3_a11
ER  - 
%0 Journal Article
%A Murphy, Emmy
%A Niederkrüger, Klaus
%A Plamenevskaya, Olga
%A Stipsicz, András I
%T Loose Legendrians and the plastikstufe
%J Geometry & topology
%D 2013
%P 1791-1814
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/
%R 10.2140/gt.2013.17.1791
%F GT_2013_17_3_a11
Murphy, Emmy; Niederkrüger, Klaus; Plamenevskaya, Olga; Stipsicz, András I. Loose Legendrians and the plastikstufe. Geometry & topology, Tome 17 (2013) no. 3, pp. 1791-1814. doi : 10.2140/gt.2013.17.1791. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1791/

[1] M Abouzaid, P Seidel, Altering symplectic manifolds by homologous recombination

[2] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : Symplectic geometry of affine complex manifolds, 59 (2012)

[3] K Dymara, Legendrian knots in overtwisted contact structures on S3, Ann. Global Anal. Geom. 19 (2001) 293

[4] T Ekholm, J Etnyre, M Sullivan, Non-isotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85

[5] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[6] Y Eliashberg, M Fraser, Topologically trivial Legendrian knots, J. Symplectic Geom. 7 (2009) 77

[7] Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002)

[8] J B Etnyre, On knots in overtwisted contact structures

[9] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier B. V., Amsterdam (2005) 105

[10] J B Etnyre, D M Pancholi, On generalizing Lutz twists, J. Lond. Math. Soc. 84 (2011) 670

[11] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008)

[12] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[13] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the ICM, Vol. II" (editor T Li), Higher Ed. Press (2002) 405

[14] M Gromov, Partial differential relations, 9, Springer (1986)

[15] K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309

[16] Y Huang, A proof of the classification theorem of overtwisted contact structures via convex surface theory

[17] P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287

[18] M Mclean, Personal communication

[19] M Mclean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877

[20] E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds

[21] K Niederkrüger, Habilitation, Toulouse, in preparation

[22] K Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473

[23] K Niederkrüger, F Presas, Some remarks on the size of tubular neighborhoods in contact topology and fillability, Geom. Topol. 14 (2010) 719

[24] P Seidel, I Smith, The symplectic topology of Ramanujam’s surface, Comment. Math. Helv. 80 (2005) 859

[25] I Ustilovsky, Infinitely many contact structures on S4m+1, Internat. Math. Res. Notices (1999) 781

[26] T Vogel, Existence of Engel structures, Ann. of Math. 169 (2009) 79

Cité par Sources :